Question 11.8: A block of mass m moving with a velocity v0 hits squarely th...

A block of mass m moving with a velocity v_0 hits squarely the prismatic member AB at its midpoint C (Fig. 11.31). Determine (a) the equivalent static load P_m, (b) the maximum stress s_m in the member, and (c) the maximum deflection x_m at point C.

11.31
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Equivalent Static Load.     The maximum strain energy of the member is equal to the kinetic energy of the block before impact. We have

U_{m}=\frac{1}{2} m v_{0}^{2}                                (11.50)

On the other hand, expressing U_m as the work of the equivalent horizontal static load as it is slowly applied at the midpoint C of the member, we write

U_{m}=\frac{1}{2} P_{m} x_{m}                              (11.51)

where x_m is the deflection of C corresponding to the static load P_m. From the table of Beam Deflections and Slopes of Appendix D, we find that

x_{m}=\frac{P_{m} L^{3}}{48 E I}                      (11.52)

Beam Deflections and Slopes
Beam and Loading Elastic Curve Maximum Deflection Slope at End Equation of Elastic Curve
-\frac{P L^{3}}{3 E I} -\frac{P L^{2}}{2 E I} y=\frac{P}{6 EI}\left(x^{3}-3 L x^{2}\right)
-\frac{w L^{4}}{8 E I} -\frac{w L^{3}}{6 E I} y=-\frac{w}{24 E I}\left(x^{4}-4 L x^{3}+6 L^{2} x^{2}\right)
-\frac{M L^{2}}{2 E I} -\frac{M L}{E I} y=-\frac{M}{2 E I} x^{2}
-\frac{P L^{3}}{48 E I} \pm \frac{P L^{2}}{16 E I} For x \leq \frac{1}{2} L :

y=\frac{P}{48 E I}\left(4 x^{3}-3 L^{2} x\right)

For a > b:

-\frac{P b\left(L^{2}-b^{2}\right)^{3 / 2}}{9 \sqrt{3} E I L}

at x_{m}=\sqrt{\frac{L^{2}-b^{2}}{3}}

u _{A}=-\frac{P b\left(L^{2}-b^{2}\right)}{6 E I L}

 

u_{B}=+\frac{P a\left(L^{2}-a^{2}\right)}{6 E I L}

For x < a:

y=\frac{P b}{6 E I L}\left[x^{3}-\left(L^{2}-b^{2}\right) x\right]

For x = a: y=-\frac{P a^{2} b^{2}}{3 E I L}

-\frac{5 w L^{4}}{384 E I} \pm \frac{w L^{3}}{24 E I} y=-\frac{w}{24 E I}\left(x^{4}-2 L x^{3}+L^{3} x\right)
\frac{M L^{2}}{9 \sqrt{3} E I} u _{A}=+\frac{M L}{6 E I}

 

u _{B}=-\frac{M L}{3 E I}

y=-\frac{M}{6 E I L}\left(x^{3}-L^{2} x\right)

Substituting for x_m from (11.52) into (11.51), we write

U_{m}=\frac{1}{2} \frac{P_{m}^{2} L^{3}}{48 E I}

Solving for P_m and recalling Eq. (11.50), we find that the static load equivalent to the given impact loading is

P_{m}=\sqrt{\frac{96 U_{m} E I}{L^{3}}}=\sqrt{\frac{48 m v_{0}^{2} E I}{L^{3}}}                          (11.53)

(b) Maximum Stress.     Drawing the free-body diagram of the member (Fig. 11.32), we find that the maximum value of the bending moment occurs at C and is M_{\max }=P_{m} L / 4. The maximum stress, therefore, occurs in a transverse section through C and is equal to

s _{m}=\frac{M_{\max } c}{I}=\frac{P_{m} L c}{4 I}

Substituting for P_m from (11.53), we write

s_{m}=\sqrt{\frac{3 m v_{0}^{2} E I}{L(I / c)^{2}}}

(c) Maximum Deflection.     Substituting into Eq. (11.52) the expression obtained for P_m in (11.53), we have

x_{m}=\frac{L^{3}}{48 E I} \sqrt{\frac{48 m v_{0}^{2} E I}{L^{3}}}=\sqrt{\frac{m v_{0}^{2} L^{3}}{48 E I}}
11.32

Related Answered Questions

Question: 11.S-P.6

Verified Answer:

Castigliano’s Theorem.     Since the given loading...
Question: 11.S-P.7

Verified Answer:

Castigliano’s Theorem.     The beam is indetermina...
Question: 11.S-P.5

Verified Answer:

Castigliano’s Theorem.     Since no vertical load ...
Question: 11.15

Verified Answer:

The beam is statically indeterminate to the first ...
Question: 11.13

Verified Answer:

Deflection at A. We apply a dummy downward load [l...