Question 7.16: A cast iron beam is of T-section as shown in Fig. 7.21. The ...

A cast iron beam is of T-section as shown in Fig. 7.21. The beam is simply supported on a span of 8 m. The beam carries a uniformly distributed load of 1.5 kN/m length on the entire span. Determine the maximum tensile and maximum compressive stresses.

7.21
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given :
Length,   L = 8 m
U.D.L.,    w = 1.5 kN/m = 1500 N/m
To find the position of the N.A., the C.G. of the section is to be calculated first. The C.G. will be lying on the y-y axis.
Let          \bar{y} = Distance of the C.G. of the section from the bottom

∴        \bar{y} =\frac{A_1y_1+A_2y_2}{A_1+A_2}=\frac{(100\times 20) \times \Big(80+\frac{20}{2}\Big)+80\times 20 \times \frac{80}{2}}{(100 \times 2)+(80\times 20)}\\  \quad \quad \quad  =\frac{180000+64000}{2000+1600}=\frac{244000}{3600}=67.77  mm

∴ N.A. lies at a distance of 67.77 mm from the bottom face or 100 – 67.77 = 32.23 mm from the top face.
Now moment of inertia of the section about N.A. is given by,

I=I_1+I_2

where  I_1 = M.O.I. of top flange about N.A.

=\text{ M.O.I. of top flange about its C.G. + }A_1 \times \text{ (Distance of its C.G. from N.A.)}^2 \\ =\frac{100\times 20^3}{12}+(100\times 20) \times (32.23-10)^2 \\ = 66666.7 + 988345.8 = 1055012.5  mm^4 \\ I_2 = \text{ M.O.I. of web about N.A.} \\ = \text{ M.O.I. of web about its C.G. + } A_2 \times \text{ (Distance of its C.G. from N.A.)}^2 \\ = \frac{20\times 80^3}{12} + (80 × 20) × (67.77 – 40)^2 \\ = 853333.3 + 1233876.6 = 2087209.9  mm^4 \\ I = I_1 + I_2 = 1055012.5 + 2087209.9 = 3142222.4  mm^4.

For a simply supported beam, the maximum tensile stress will be at the extreme bottom fibre and maximum compressive stress will be at the extreme top fibre.
Maximum B.M. is given by,

M=\frac{w\times L^2}{8}=\frac{1500 \times 8^2}{8}=12000  Nm \\ = 12000 × 1000 = 12000000  Nmm

Now using the relation

\frac{M}{I}=\frac{\sigma}{y} \quad \text{ or } \quad \sigma=\frac{M}{I}\times y

(i) For maximum tensile stress,

y = Distance of extreme bottom fibre from N.A. = 67.77 mm

∴       \sigma=\frac{12000000 }{3142222.4}× 67.77 = \pmb{258.81  N/mm^2.}

(ii) For maximum compressive stress,

y = Distance of extreme top fibre from N.A. = 32.23 mm

∴              \sigma=\frac{M}{I}\times y=\frac{12000000}{3142222 4} \times 32.23 = \pmb{123.08  N/mm^2.}

Related Answered Questions