Question 16.3: A centrifugal compressor has an impeller tip speed of 360 m/...

A centrifugal compressor has an impeller tip speed of 360 m/s. Determine (a) the absolute Mach number of flow leaving the radial vanes of the impeller and (b) the mass flow rate. The following data are given

Impeller Tip speed 360 m/s

Radial component of flow velocity at impeller exit 30 m/s

Slip factor 0.9

Flow area at impeller exit 0.1 m^{2}

Power input factor 1.0

Isentropic efficiency 0.9

Inlet stagnation temperature 300 K

Inlet stagnation pressure 100 kN/m^{2}

R (for air) 287 J/kg K

g (for air) 1.4

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The absolute Mach number is the Mach number based on absolute velocity.

 

Therefore, M_{2}=\frac{V_{2}}{\sqrt{\gamma R T_{2}}}

 

Now V_{2} \text { and } T_{2} have to be determined.

From the velocity triangle at impeller exit

 

V_{2}=\sqrt{V_{w 2}^{2}+V_{f 2}^{2}}

 

In case of slip, V_{w 2}=\sigma U_{2}

 

Hence, V_{2}=\sqrt{\left(\sigma U_{2}\right)^{2}+V_{f 2}^{2}}

 

=\sqrt{(0.9 \times 360)^{2}+(30)^{2}}

 

= 325.38 m/s

 

From Eq. (16.5)

 

w=\Psi \sigma U_{2}^{2}=c_{p}\left(T_{2 t}-T_{1 t}\right) (16.5)

 

T_{2 t}=T_{1 t}+\frac{\psi \sigma U_{2}^{2}}{c_{p}}

 

\left[c_{p}=\frac{\gamma R}{\gamma-1}=\frac{1.4 \times 287}{0.4}=1005 J / kg K \right]

 

T_{2 t}=300+\frac{0.9 \times(360)^{2}}{1005}

 

= 416 K.

 

T_{2}=T_{2 t}-\frac{V_{2}^{2}}{2 c_{n}}

 

=416-\frac{(325.38)^{2}}{2 \times 1005}

 

= 363.33 K.

 

Therefore, M_{2}=\frac{325.28}{\sqrt{1.4 \times 287 \times 363.33}}

 

= 0.85

 

Mass flow rate \dot{m}=\rho_{2} A_{2} V_{f 2}

 

We have to find out \rho_{2}

 

With the help of Eq (16.7), we can write

 

\begin{aligned}\frac{p_{3 t}}{p_{1 t}} &=\left(\frac{T_{3 t}^{\prime}}{T_{1 t}}\right)^{\frac{\gamma}{\gamma-1}} \\&=\left[1+\frac{\eta_{c}\left(T_{3 t}-T_{1 t}\right)}{T_{1 t}}\right]^{\frac{\gamma}{\gamma-1}}\end{aligned} (16.7)

 

\frac{p_{2 t}}{p_{1 t}}=\left[1+\frac{0.9 \times(416-300)}{300}\right]^{\frac{1.4}{0.4}}

 

= 2.84

 

again, \frac{p_{2}}{p_{2 t}}=\left(\frac{T_{2}}{T_{2 t}}\right)^{\frac{1.4}{0.4}}=\left(\frac{363.33}{416}\right)^{\frac{1.4}{0.4}}=0.623

 

Hence

 

p_{2}=0.623 p_{2 t}

 

=0.623 \times 2.84 p_{1 t}

 

=0.623 \times 2.84 \times 100 kpa

 

= 176.93 kPa

 

Therefore, \dot{m}=\left(\frac{p_{2}}{R T_{2}}\right) \cdot A_{2} V_{f 2}

 

=\frac{176.93 \times 10^{3}}{287 \times 363.33} \times 0.1 \times 30

 

= 5.09 kg/s

Related Answered Questions