Question 7.132: A chain is suspended between points at the same elevation an...

A chain is suspended between points at the same elevation and spaced a distance of 60 ft apart. If it has a weight per unit length of 0.5 lb/ft and the sag is 3 ft, determine the maximum tension in the chain.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

x=\int \frac{d s}{\left\{1+\frac{1}{F_H^2} \int\left(w_0 d s\right)^2\right\}^{\frac{1}{2}}}

Performing the integration yields:

x=\frac{F_H}{0.5}\left\{\operatorname{sin~}^{-1}\left[\frac{1}{F_H}\left(0.5 s+C_1\right)\right]+C_2\right\}       (1)

From Eq. 7-14

\frac{d y}{d x}=\frac{1}{F_H} \int w_0 d s

\frac{d y}{d x}=\frac{1}{F_H}\left(0.5 s+C_1\right)

\text { At } s=0 ; \quad \frac{d y}{d x}=0 \quad \text { hence } C_1=0

\frac{d y}{d x}=\tan \theta=\frac{0.5 s}{F_H}     (2)

Applying boundary conditions at x = 0; s = 0 to Eq. (1) and using the result C_1=0 yields C_2=0 . Hence

s=\frac{F_H}{0.5} \sinh \left(\frac{0.5}{F_H} x\right)          (3)

Substituting Eq. (3) into (2) yields:

\frac{d y}{d x}=\sinh \left(\frac{0.5 x}{F_H}\right)       (4)

Performing the integration

y=\frac{F_H}{0.5} \cosh \left(\frac{0.5}{F_H} x\right)+C_3        (5)

Applying boundary conditions at x=0 ; y=0 \text { yields } C_3=-\frac{F_H}{0.5} \text {. } Therefore y=\frac{F_H}{0.5}\left[\cosh \left(\frac{0.5}{F_H} x\right)-1\right]

\text { At } x=30 \mathrm{ft} ; \quad y=3 \mathrm{ft} ; \quad 3=\frac{F_H}{0.5}\left[\cosh \left(\frac{0.5}{F_H}(30)\right)-1\right]

By trial and error F_H=75.25  \mathrm{lb}

\text { At } x=30  \mathrm{ft} ; \quad \theta=\theta_{\max }. From Eq. (4)

\tan \theta_{\max }=\left.\frac{d y}{d x}\right|_{x=30  \mathrm{ft}}=\sinh \left(\frac{0.5(30)}{75.25}\right) \quad \theta_{\max }=11.346^{\circ}

T_{\max }=\frac{F_H}{\cos \theta_{\max }}=\frac{75.25}{\cos 11.346^{\circ}}=76.7  \mathrm{lb}

1

Related Answered Questions

Question: 7.135

Verified Answer:

Question: 7.134

Verified Answer:

Free body Diagram: The support reactions need not ...
Question: 7.133

Verified Answer:

Question: 7.130

Verified Answer:

Support Reactions: The 6 kN load can be replacde b...