Question 10.04: A column with a 2-in.-square cross section and 28-in. effect...
A column with a 2-in.-square cross section and 28-in. effective length is made of the aluminum alloy 2014-T6. Using the allowable-stress method, determine the maximum load P that can be safely supported with an eccentricity of 0.8 \mathrm{in}.
Learn more on how we answer questions.
We first compute the radius of gyration r using the given data
\begin{gathered} A=(2 \text { in. })^{2}=4 \mathrm{in}^{2} \quad I=\frac{1}{12}(2 \mathrm{in} .)^{4}=1.333 \mathrm{in}^{4} \\ r=\sqrt{\frac{I}{A}}=\sqrt{\frac{1.333 \mathrm{in}^{4}}{4 \mathrm{in}^{2}}}=0.5774 \mathrm{in} . \end{gathered}
We next compute L / r=(28 \mathrm{in}) /.(0.5774 in. )=48.50.
Since L / r<55, we use Eq. (10.48)
C_P=\frac{1+\left(\sigma_{C E} / \sigma_C\right)}{2 c}-\sqrt{\left[\frac{1+\left(\sigma_{C E} / \sigma_C\right)}{2 c}\right]^2-\frac{\sigma_{C E} / \sigma_C}{c}} (10.48)
to determine the allowable stress for the aluminum column subjected to a centric load. We have
\sigma_{\text {all }}=[30.9-0.229(48.50)]=19.79 \mathrm{ksi}
We now use Eq. (10.53)
{\frac{P}{A}}+{\frac{M c}{I}}\leq\sigma_{\mathrm{all}} (10.53)
with M=P e and c=\frac{1}{2}(2 \mathrm{in})=.1 in. to determine the allowable load:
\begin{gathered} \frac{P}{4 \mathrm{in}^{2}}+\frac{P(0.8 \mathrm{in} .)(1 \mathrm{in} .)}{1.333 \mathrm{in}^{4}} \leq 19.79 \mathrm{ksi} \\ P \leq 23.3 \mathrm{kips} \end{gathered}
The maximum load that can be safely applied is P=23.3 kips.