Question 12.4: A continuous foundation is shown in Figure 12.7. If the load...

A continuous foundation is shown in Figure 12.7. If the load eccentricity is 0.5 ft, determine the ultimate load, Q_{ult}, per unit length of the foundation.

12.7
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

With c′ = 0, Eq. (12.20) gives

q_u^\prime = q N_qF_{qs}F_{qd} F_{qi}  +\frac{1}{2} \gamma B^\prime N_\gamma F_{\gamma s}F_{\gamma d}F_{\gamma i}

q = (110)(4) = 440 lb/ft²

For φ′ = 35°, from Table 12.1,

φ′ N_c N_q N_\gamma φ′ N_c N_q N_\gamma
0 5.14 1.00 0.00 23 18.05 8.66 8.20
1 5.38 1.09 0.07 24 19.32 9.60 9.44
2 5.63 1.20 0.15 25 20.72 10.66 10.88
3 5.90 1.31 0.24 26 22.25 11.85 12.54
4 6.19 1.43 0.34 27 23.94 13.20 14.47
5 6.49 1.57 0.45 28 25.80 14.72 16.72
6 6.81 1.72 0.57 29 27.86 16.44 19.34
7 7.16 1.88 0.71 30 30.14 18.40 22.40
8 7.53 2.06 0.86 31 32.67 20.63 25.99
9 7.92 2.25 1.03 32 35.49 23.18 30.22
10 8.35 2.47 1.22 33 38.64 26.09 35.19
11 8.80 2.71 1.44 34 42.16 29.44 41.06
12 9.28 2.97 1.69 35 46.12 33.30 48.03
13 9.81 3.26 1.97 36 50.59 37.75 56.31
14 10.37 3.59 2.29 37 55.63 42.92 66.19
15 10.98 3.94 2.65 38 61.35 48.93 78.03
16 11.63 4.34 3.06 39 67.87 55.96 92.25
17 12.34 4.77 3.53 40 75.31 64.20 109.41
18 13.10 5.26 4.07 41 83.86 73.90 130.22
19 13.93 5.80 4.68 42 93.71 85.38 155.55
20 14.83 6.40 5.39 43 105.11 99.02 186.54
21 15.82 7.07 6.20 44 118.37 115.31 224.64
22 16.88 7.82 7.13 45 133.88 134.88 271.76

N_q = 33.3 and N_\gamma=  48.03
B′ = 6 – (2)(0.5) = 5 ft

Because it is a strip foundation, B′/L′ is zero. Hence F_{qs} = 1 and F_{\gamma s} = 1, and
F_{qi} = F_{\gamma i} = 1
From Table 12.2,

Factor Relationship Source
Shape* F_{cs} = 1 +\frac{B}{L}\frac{ N_q}{ N_c} De Beer (1970)
F_{qs} = 1 +\frac{B}{L}\tan \phi^\prime
F_{\gamma s} = 1 – 0.4\frac{B}{L}
where L = length of the foundation (L > B)
Depth{}^† Condition (a): Df/B \leq  1 Hansen (1970)
F_{cd} = 1 + 0.4\frac{D_f}{B}
F_{qd}=1+2\tan\phi^\prime(1-\sin \phi^\prime)^2\frac{D_f}{B}
F_{\gamma d} = 1
Condition (b): D_f /B \gt   1
F_{cd} = 1 +( 0.4)\tan^{-1}\left(\frac{D_f}{B}\right)
F_{qd}=1+2\tan\phi^\prime(1-\sin \phi^\prime)^2\tan^{-1}\left(\frac{D_f}{B}\right)
F_{\gamma d} = 1
Inclination F_{ci}=F_{qi}=\left(1-\frac{\beta^\circ}{90^\circ}\right)^2 Meyerhof (1963); Hanna
and Meyerhof (1981)
F_{\gamma i}=\left(1-\frac{\beta}{\phi^\prime}\right)^2
where β = inclination of the load on the foundation with respect to the vertical

F_{qd} = 1 + 2 \tan \phi^\prime (1 – \sin \phi^\prime)^2\frac{ D_f}{B} = 1 + 0.255\left(\frac{4}{6}\right)=1.17
F_{\gamma d} = 1
q_u^\prime =(440)(33.3)(1)(1.17)(1) +\left(\frac{1}{2}\right) (110)(5)(48.03)(1)(1)(1)= 30,351 lb/ft²
Hence,
Q_{ult} = (B^\prime)(1)(q_u^\prime)=(5)(1)(30,351)= 151,755 lb/ft = 75.88 ton/ft

Related Answered Questions