Question 14.2: A cross-section of a slit rectangular tube of uniform thickn...
A cross-section of a slit rectangular tube of uniform thickness, t (<< other cross-sectional dimensions) is shown in Figure 14.22. Derive an expression for the distance ‘e’ of the shear centre.

Learn more on how we answer questions.
The above problem can be solved from the first principle as we did in our previous problem. Else, we can take the previous result and find the distance e by taking the length b_3 of Figure 14.21 as b_2 / 2 .
Putting b_3=b_2 / 2 in the previous example’s result, we get
e=\frac{3 b_1 b_2^2\left(b_1+b_2\right)-8 b_1\left(b_2 / 2\right)^3}{b_2^2\left(b_2+6 b_1+3 b_2\right)+4\left(b_2 / 2\right)^2\left(b_2-3 b_2\right)}
=\frac{3 b_1 b_2^2\left(b_1+b_2\right)-b_1 b_2^3}{b_2^2\left(6 b_1+4 b_2\right)+b_2^2\left(-2 b_2\right)}
=\frac{b_1 b_2^2\left(3 b_1+3 b_2-b_2\right)}{b_2^2\left(6 b_1+4 b_2-2 b_2\right)}
or e=\frac{b_1\left(3 b_1+2 b_2\right)}{2\left(3 b_1+b_2\right)}