Question 13.2: A damped SDOF system has a mass of 4900 N, stiffness of 20 k...

A damped SDOF system has a mass of 4900 N, stiffness of 20 kN/m and damping 5%. It is subjected to a ground motion as shown in table. The initial displacement and velocity are zero. Its hysteresis behaviour is shown in Figure 13.23. Determine the displacement time-history assuming:

(a) elastic response
(b) elasto-plastic response with yield strength = ±250 N

Acceleration 0 −0.1 g 0 0
time sec 0 0.3 0.6 1.0
Annotation 2022-10-16 172354
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Mass m = 4900/9.80 = 500 kg; stiffness = 20 kN/m
Period of vibration = 0.993 sec
Strain-hardening ratio = nil
Mass proportional damping = 5%;

∴ c = 2ξωm = 316 Ns/m

Step size = 0.1 sec
The linear analysis was carried out using the Newmark β method illustrated in Chapter 7. Factor β was taken as 1/4 and γ was taken as 1/2. The nonlinear analysis was carried out using yet another algorithm based on Newmark method – without corrections in force or displacement. Only stiffness was modified in the next step. The calculations were carried out in an Excel sheet as shown in Table 13.1.

\Delta x_{i}=\frac{\Delta \overline{p} }{\overline{k} }        (7.55)

where

\overline{k} =k+\frac{\gamma }{\beta \Delta t} c+\frac{1}{\beta (\Delta t)^{2}} m          (7.56)

and

\Delta \overline{p} _{i}=\Delta p_{i}+\left\lgroup\frac{1}{\beta \Delta t}m+\frac{\gamma }{\beta }c \right\rgroup \dot{x} _{i}+\left[\frac{1}{2\beta }m+\Delta t \left\lgroup\frac{\gamma }{2\beta }-1 \right\rgroup c \right] \ddot{x} _{i}              (7.57)

\Delta \dot{x} _{i}=\frac{\gamma }{\beta \Delta t} \Delta x_{i}-\frac{\gamma }{\beta } \dot{x} _{i}+\Delta t\left\lgroup1-\frac{\gamma }{2\beta } \right\rgroup \ddot{x} _{i}             (7.54)

\ddot{x} _{i+1}=\frac{P_{i+1}-c\dot{x}_{i+1}-(f_{s})_{i+1} }{m}                (13.19)

The results of elastic and elasto-plastic analysis are shown in Figure 13.24.
Yield displacement = F_{y} /k = 250 × 100/20000 = 1.25 cm
Displacement ductility = Maximum displacement/yield displacement = 4.34/1.25 = 3.47.

Table 13.1 Newmark β Method Without Newton–Raphson Iteration

t_{i} x_{i} \dot x_{i} f_{si} \ddot x_{i} p_{i} \Delta \overline{p} _{i} k_{i} \overline{k} _{i} \Delta {x} _{i} \Delta \dot x _{i} {x} _{i+1} \dot x _{i+1} f _{si+1} \ddot x _{i+1} t_{i}
s m m/s N m/s² N N N/m N/m m m/s m m/s N m/s² s
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (1)
0 0.0000 0.0000 0.0000 0.0000 0.0000 163.3300 20000.00 226320.00 0.0007 0.0144 0.0007 0.0144 14.4335 0.2887 0
0.1 0.0007 0.0144 14.4335 0.2887 163.3300 749.8038 20000.00 226320.00 0.0033 0.0374 0.0040 0.0518 80.6940 0.4592 0.1
0.2 0.0040 0.0518 80.6940 0.4592 326.6700 1691.8210 20000.00 226320.00 0.0075 0.0459 0.0115 0.0977 230.2010 0.4579 0.2
0.3 0.0115 0.0977 230.2010 0.4579 490.0000 2309.869 20000.00 226320.00 0.0102 0.0088 0.0217 0.1064 250.0000 0.0861 0.3
0.4 0.0217 0.1064 250.0000 0.0861 326.6700 2118.882 0.00 206320.00 0.0103 −0.0075 0.0320 0.0990 250.0000 −0.2359 0.4
0.5 0.0320 0.0990 250.0000 −0.2359 163.3300 1642.401 0.00 206320.00 0.0080 −0.0387 0.0399 0.0603 250.0000 −0.5381 0.5
0.6 0.0399 0.0603 250.0000 −0.5381 0.0000 705.1104 0.00 206320.00 0.0034 −0.0522 0.0434 0.0081 250.0000 −0.5051 0.6
0.7 0.0434 0.0081 250.0000 −0.5051 0.0000 −338.0876 0.00 206320.00 −0.0016 −0.0490 0.0417 −0.0409 250.0000 −0.4742 0.7
0.8 0.0417 −0.0409 250.0000 −0.4742 0.0000 −1317.3750 2000.00 226320.00 −0.0058 −0.0347 0.0359 −0.0755 133.5830 −0.2194 0.8
0.9 0.0359 −0.0755 133.5830 −0.2194 0.0000 −1778.1313 2000.00 226320.00 −0.0079 −0.0060 0.0280 −0.0816 −23.5513 0.0987 0.9
1 0.0280 −0.0816 −23.5513 0.0987 0.0000 −1584.6174 2000.00 226320.00 −0.0070 0.0231 0.0210 −0.0584 −163.5846 0.3641 1
Annotation 2022-10-16 174244

Related Answered Questions

Question: 13.4

Verified Answer:

Let mass = 1, stiffness = 39.5, Period = 1 sec, Da...
Question: 13.3

Verified Answer:

The calculations were carried out in an Excel shee...