Question 13.2: A damped SDOF system has a mass of 4900 N, stiffness of 20 k...
A damped SDOF system has a mass of 4900 N, stiffness of 20 kN/m and damping 5%. It is subjected to a ground motion as shown in table. The initial displacement and velocity are zero. Its hysteresis behaviour is shown in Figure 13.23. Determine the displacement time-history assuming:
(a) elastic response
(b) elasto-plastic response with yield strength = ±250 N
Acceleration | 0 | −0.1 g | 0 | 0 |
time sec | 0 | 0.3 | 0.6 | 1.0 |

Learn more on how we answer questions.
Mass m = 4900/9.80 = 500 kg; stiffness = 20 kN/m
Period of vibration = 0.993 sec
Strain-hardening ratio = nil
Mass proportional damping = 5%;
∴ c = 2ξωm = 316 Ns/m
Step size = 0.1 sec
The linear analysis was carried out using the Newmark β method illustrated in Chapter 7. Factor β was taken as 1/4 and γ was taken as 1/2. The nonlinear analysis was carried out using yet another algorithm based on Newmark method – without corrections in force or displacement. Only stiffness was modified in the next step. The calculations were carried out in an Excel sheet as shown in Table 13.1.
\Delta x_{i}=\frac{\Delta \overline{p} }{\overline{k} } (7.55)
where
\overline{k} =k+\frac{\gamma }{\beta \Delta t} c+\frac{1}{\beta (\Delta t)^{2}} m (7.56)
and
\Delta \overline{p} _{i}=\Delta p_{i}+\left\lgroup\frac{1}{\beta \Delta t}m+\frac{\gamma }{\beta }c \right\rgroup \dot{x} _{i}+\left[\frac{1}{2\beta }m+\Delta t \left\lgroup\frac{\gamma }{2\beta }-1 \right\rgroup c \right] \ddot{x} _{i} (7.57)
\Delta \dot{x} _{i}=\frac{\gamma }{\beta \Delta t} \Delta x_{i}-\frac{\gamma }{\beta } \dot{x} _{i}+\Delta t\left\lgroup1-\frac{\gamma }{2\beta } \right\rgroup \ddot{x} _{i} (7.54)
\ddot{x} _{i+1}=\frac{P_{i+1}-c\dot{x}_{i+1}-(f_{s})_{i+1} }{m} (13.19)
The results of elastic and elasto-plastic analysis are shown in Figure 13.24.
Yield displacement = F_{y} /k = 250 × 100/20000 = 1.25 cm
Displacement ductility = Maximum displacement/yield displacement = 4.34/1.25 = 3.47.
Table 13.1 Newmark β Method Without Newton–Raphson Iteration
t_{i} | x_{i} | \dot x_{i} | f_{si} | \ddot x_{i} | p_{i} | \Delta \overline{p} _{i} | k_{i} | \overline{k} _{i} | \Delta {x} _{i} | \Delta \dot x _{i} | {x} _{i+1} | \dot x _{i+1} | f _{si+1} | \ddot x _{i+1} | t_{i} |
s | m | m/s | N | m/s² | N | N | N/m | N/m | m | m/s | m | m/s | N | m/s² | s |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | (1) |
0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 163.3300 | 20000.00 | 226320.00 | 0.0007 | 0.0144 | 0.0007 | 0.0144 | 14.4335 | 0.2887 | 0 |
0.1 | 0.0007 | 0.0144 | 14.4335 | 0.2887 | 163.3300 | 749.8038 | 20000.00 | 226320.00 | 0.0033 | 0.0374 | 0.0040 | 0.0518 | 80.6940 | 0.4592 | 0.1 |
0.2 | 0.0040 | 0.0518 | 80.6940 | 0.4592 | 326.6700 | 1691.8210 | 20000.00 | 226320.00 | 0.0075 | 0.0459 | 0.0115 | 0.0977 | 230.2010 | 0.4579 | 0.2 |
0.3 | 0.0115 | 0.0977 | 230.2010 | 0.4579 | 490.0000 | 2309.869 | 20000.00 | 226320.00 | 0.0102 | 0.0088 | 0.0217 | 0.1064 | 250.0000 | 0.0861 | 0.3 |
0.4 | 0.0217 | 0.1064 | 250.0000 | 0.0861 | 326.6700 | 2118.882 | 0.00 | 206320.00 | 0.0103 | −0.0075 | 0.0320 | 0.0990 | 250.0000 | −0.2359 | 0.4 |
0.5 | 0.0320 | 0.0990 | 250.0000 | −0.2359 | 163.3300 | 1642.401 | 0.00 | 206320.00 | 0.0080 | −0.0387 | 0.0399 | 0.0603 | 250.0000 | −0.5381 | 0.5 |
0.6 | 0.0399 | 0.0603 | 250.0000 | −0.5381 | 0.0000 | 705.1104 | 0.00 | 206320.00 | 0.0034 | −0.0522 | 0.0434 | 0.0081 | 250.0000 | −0.5051 | 0.6 |
0.7 | 0.0434 | 0.0081 | 250.0000 | −0.5051 | 0.0000 | −338.0876 | 0.00 | 206320.00 | −0.0016 | −0.0490 | 0.0417 | −0.0409 | 250.0000 | −0.4742 | 0.7 |
0.8 | 0.0417 | −0.0409 | 250.0000 | −0.4742 | 0.0000 | −1317.3750 | 2000.00 | 226320.00 | −0.0058 | −0.0347 | 0.0359 | −0.0755 | 133.5830 | −0.2194 | 0.8 |
0.9 | 0.0359 | −0.0755 | 133.5830 | −0.2194 | 0.0000 | −1778.1313 | 2000.00 | 226320.00 | −0.0079 | −0.0060 | 0.0280 | −0.0816 | −23.5513 | 0.0987 | 0.9 |
1 | 0.0280 | −0.0816 | −23.5513 | 0.0987 | 0.0000 | −1584.6174 | 2000.00 | 226320.00 | −0.0070 | 0.0231 | 0.0210 | −0.0584 | −163.5846 | 0.3641 | 1 |
