Question 10.3.1: (a) Determine the units of the logarithmic decrement (b) If ...
(a) Determine the units of the logarithmic decrement
(b) If the damping coefficient c of a structure is r times the critical damping coefficient c_c, determine the logarithmic decrement.
Learn more on how we answer questions.
(a) It is clear from Eqn 10.2-2 that the unit of the quantity c(dx/dt) is N, hence
M\frac{d^2x}{dt^2}+c\frac{dx}{dt}+kx=P (10.2-2)
(units of c) \times (ms^{-1}) = N
=kg \ m \ s^{-2}
then
units of c =(kg \ m \ s^{-2})m^{-1} \ s
=kg \ s^{-1} (i.e. kilograms per second)
From Eqn 10.3-8,
\begin{matrix} m_1 \\ m_2 \end{matrix}=-\frac{c}{2M}\pm i\frac{1}{2M}\left(4kM-c^2\right) where i =√-1
=-\frac{c}{2M}\pm i\omega_d (10.3-8)
units of \omega_d=\frac{√\left[\left(N \ m^{-1}\right)kg-\left(kg \ s^{-1}\right)^2 \right] }{kg}
=√\left(N \ m^{-1} \ kg^{-1}-s^{-2}\right)
=√\left[(kg \ m \ s^{-2})m^{-1} \ kg^{-1}-s^{-2}\right]=√s^{-2}
=s^{-1} (radians per second)
then
units of period T_d=1/s^{-1}=s (seconds)
From Eqn 10.3-16
logarithmic decrement \delta =\frac{cT_d}{2M} (10.3-16)
units of \delta=\frac{(units \ of \ c)(units \ of \ T_d)}{(units \ of \ M)}
=\frac{(kg \ s^{-1})(s)}{kg}
=\underline{dimensionless}
i.e. as expected, the logarithmic decrement \delta is a number, without units.
(b) From Eqn 10.3-16,
\delta =\frac{cT_d}{2M} where T_d=\frac{2\pi }{w_4} (see Eqn 10-3-14)
and
\omega_d=\frac{(4kM-c^2)^{1/2}}{2M} (see Eqn 10.3-8)
then
\delta =\frac{2\pi c}{(4kM-c^2)^{1/2}} and c = rc_r (given)
=r\times2√(kM) (from Eqn 10.3-6)
c_c=2√(kM) (10.3-6)
Hence
\delta =\frac{2\pi r\left[2√(kM)\right] }{\left(4kM-r^24kM\right)^{1/2} }=\underline{2\pi r(1-r^2)^{-1/2}}
For practical structures, r often lies between a few per cent to 20%, so that \delta \approx 2\pi r.