Question 10.3.1: (a) Determine the units of the logarithmic decrement (b) If ...

(a) Determine the units of the logarithmic decrement
(b) If the damping coefficient c of a structure is r times the critical damping coefficient c_c, determine the logarithmic decrement.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) It is clear from Eqn 10.2-2 that the unit of the quantity c(dx/dt) is N, hence

M\frac{d^2x}{dt^2}+c\frac{dx}{dt}+kx=P          (10.2-2)

(units of c) \times (ms^{-1}) = N

=kg \ m \ s^{-2}

then

units of c =(kg \ m \ s^{-2})m^{-1} \ s

=kg \ s^{-1}        (i.e. kilograms per second)

From Eqn 10.3-8,

\begin{matrix} m_1 \\ m_2 \end{matrix}=-\frac{c}{2M}\pm i\frac{1}{2M}\left(4kM-c^2\right)  where  i =√-1

=-\frac{c}{2M}\pm i\omega_d            (10.3-8)

units of \omega_d=\frac{√\left[\left(N \ m^{-1}\right)kg-\left(kg \ s^{-1}\right)^2 \right] }{kg}

=√\left(N \ m^{-1} \ kg^{-1}-s^{-2}\right)

=√\left[(kg \ m \ s^{-2})m^{-1} \ kg^{-1}-s^{-2}\right]=√s^{-2}

=s^{-1}             (radians per second)

then

units of period T_d=1/s^{-1}=s       (seconds)

From Eqn 10.3-16

logarithmic decrement \delta =\frac{cT_d}{2M}         (10.3-16)

units of \delta=\frac{(units \ of \ c)(units \ of \ T_d)}{(units \ of \ M)}

=\frac{(kg \ s^{-1})(s)}{kg}

=\underline{dimensionless}

i.e. as expected, the logarithmic decrement \delta is a number, without units.
(b) From Eqn 10.3-16,

\delta =\frac{cT_d}{2M}    where    T_d=\frac{2\pi }{w_4}    (see Eqn 10-3-14)

and

\omega_d=\frac{(4kM-c^2)^{1/2}}{2M}      (see Eqn 10.3-8)

then

\delta =\frac{2\pi c}{(4kM-c^2)^{1/2}}  and  c = rc_r   (given)

=r\times2√(kM)    (from Eqn 10.3-6)

c_c=2√(kM)    (10.3-6)

Hence

\delta =\frac{2\pi r\left[2√(kM)\right] }{\left(4kM-r^24kM\right)^{1/2} }=\underline{2\pi r(1-r^2)^{-1/2}}

For practical structures, r often lies between a few per cent to 20%, so that \delta \approx 2\pi r.

Related Answered Questions