Question 12.10: A diffuse, fire brick wall of temperature Ts = 500 K has the...

A diffuse, fire brick wall of temperature T_{s} = 500 K has the spectral emissivity shown and is exposed to a bed of coals at 2000 K.

Determine the total, hemispherical emissivity and emissive power of the fire brick wall. What is the total absorptivity of the wall to irradiation resulting from emission by the coals?

12.10 p1
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Known: Brick wall of surface temperature T_{s} = 500 K and prescribed ε_{λ}(λ) is exposed to coals at T_{c} = 2000 K.

Find:
1. Total, hemispherical emissivity of the fire brick wall.
2. Total emissive power of the brick wall.
3. Absorptivity of the wall to irradiation from the coals.

Schematic:

Assumptions:
1. Brick wall is opaque and diffuse.
2. Spectral distribution of irradiation at the brick wall approximates that due to emission from a blackbody at 2000 K.

Analysis:
1. The total, hemispherical emissivity follows from Equation 12.43.

ε(T) = \frac{\int_{0}^{∞}{ε_{λ}(λ, T)E_{λ,b}(λ, T)}  dλ}{E_{b}(T)}              (12.43)

ε(T_{s}) = \frac{\int_{0}^{∞}{ε_{λ}(λ)E_{λ,b}(λ, T_{s})}  dλ}{E_{b}(T_{s})}

Breaking the integral into parts,

ε(T_{s}) = ε_{λ,1} \frac{\int_{0}^{λ_{1}}E_{λ,b}  dλ}{E_{b}} + ε_{λ,2} \frac{\int_{λ_{1}}^{λ_{2}}E_{λ,b}  dλ}{E_{b}} + ε_{λ,3} \frac{\int_{λ_{2}}^{∞}E_{λ,b}  dλ}{E_{b}}

and introducing the blackbody functions, it follows that

ε(T_{s}) = ε_{λ,1}  F_{(0→λ_{1})} + ε_{λ,2}[F_{(0→λ_{2})}  –  F_{(0→λ_{1})}] + ε_{λ,3}[1  –  F_{(0→λ_{2})}]

From Table 12.2

TABLE 12.2 Blackbody Radiation Functions
\pmb{\frac{I_{λ, b}(λ, T)}{I_{λ,b}(λ_{\max}, T)}} \pmb{I_{λ, b}(λ, T)/σT^{5} (μm · K · sr)^{-1}} \pmb{F_{(0 → λ)}} λT (μm · K)
0.000000 0.375034 × 10^{-27} 0.000000 200
0.000000 0.490335 × 10^{-13} 0.000000 400
0.000014 0.104046 × 10^{-8} 0.000000 600
0.001372 0.991126 × 10^{-7} 0.000016 800
0.016406 0.118505 × 10^{-5} 0.000321 1,000
0.072534 0.523927 × 10^{-5} 0.002134 1,200
0.186082 0.134411 × 10^{-4} 0.007790 1,400
0.344904 0.249130 0.019718 1,600
0.519949 0.375568 0.039341 1,800
0.683123 0.493432 0.066728 2,000
0.816329 0.589649 × 10^{-4} 0.100888 2,200
0.912155 0.658866 0.140256 2,400
0.970891 0.701292 0.183120 2,600
0.997123 0.720239 0.227897 2,800
1.000000 0.722318 × 10^{-4} 0.250108 2,898
0.997143 0.720254 × 10^{-4} 0.273232 3,000
0.977373 0.705974 0.318102 3,200
0.943551 0.681544 0.361735 3,400
0.900429 0.650396 0.403607 3,600
0.851737 0.615225 × 10^{-4} 0.443382 3,800
0.800291 0.578064 0.480877 4,000
0.748139 0.540394 0.516014 4,200
0.696720 0.503253 0.548796 4,400
0.647004 0.467343 0.579280 4,600
0.599610 0.433109 0.607559 4,800
0.554898 0.400813 0.633747 5,000
0.513043 0.370580 × 10^{-4} 0.658970 5,200
0.474092 0.342445 0.680360 5,400
0.438002 0.316376 0.701046 5,600
0.404671 0.292301 0.720158 5,800
0.373965 0.270121 0.737818 6,000
0.345724 0.249723 × 10^{-4} 0.754140 6,200
0.319783 0.230985 0.769234 6,400
0.295973 0.213786 0.783199 6,600
0.274128 0.198008 0.796129 6,800
0.254090 0.183534 0.808109 7,000
0.235708 0.170256 × 10^{-4} 0.819217 7,200
0.218842 0.158073 0.829527 7,400
0.203360 0.146891 0.839102 7,600
0.189143 0.136621 0.848005 7,800
0.176079 0.127185 0.856288 8,000
0.147819 0.106772 × 10^{-4} 0.874608 8,500
0.124801 0.901463 × 10^{-5} 0.890029 9,000
0.105956 0.765338 0.903085 9,500
0.090442 0.653279 × 10^{-5} 0.914199 10,000
0.077600 0.560522 0.923710 10,500
0.066913 0.483321 0.931890 11,000
0.057970 0.418725 0.939959 11,500
0.050448 0.364394 × 10^{-5} 0.945098 12,000
0.038689 0.279457 0.955139 13,000
0.030131 0.217641 0.962898 14,000
0.023794 0.171866 × 10^{-5} 0.969981 15,000
0.019026 0.137429 0.973814 16,000
0.012574 0.908240 × 10^{-6} 0.980860 18,000
0.008629 0.623310 0.985602 20,000
0.003828 0.276474 0.992215 25,000
0.001945 0.140469 × 10^{-6} 0.995340 30,000
0.000656 0.473891 × 10^{-7} 0.997967 40,000
0.000279 0.201605 0.998953 50,000
0.000058 0.418597 × 10^{-8} 0.999713 75,000
0.000019 0.135752 0.999905 100,000

λ_{1}T_{s} = 1.5  μm × 500  K = 750  μm · K:\qquad F_{(0→λ_{1})} = 0.000

λ_{2}T_{s} = 10  μm × 500  K = 5000  μm · K:\qquad F_{(0→λ_{2})} = 0.634

Hence

ε(T_{s}) = 0.1 × 0 + 0.5 × 0.634 + 0.8 (1 – 0.634) = 0.610

2. From Equations 12.32 and 12.36, the total emissive power is

E_{b} = σT^{4}              (12.32)

ε(T) \equiv \frac{E(T)}{E_{b}(T)}              (12.36)

E(T_{s}) = ε(T_{s})E_{b}(T_{s}) = ε(T_{s})σT^{4}_{s}

E(T_{s}) = 0.61 × 5.67 × 10^{-8}  W/m^{2} · K^{4}(500  K)^{4} = 2162  W/m^{2}

3. From Equation 12.52, the total absorptivity of the wall to radiation from the coals is

α = \frac{\int_{0}^{∞}{α_{λ}(λ)G_{λ}(λ)}  dλ}{\int_{0}^{∞}{G_{λ}(λ)}  dλ}              (12.52)

Since the surface is diffuse, α_{λ}(λ) = ε_{λ}(λ). Moreover, since the spectral distribution of the irradiation approximates that due to emission from a blackbody at 2000 K, G_{λ}(λ) ∝ E_{λ,b}(λ, T_{c}). It follows that

α = \frac{\int_{0}^{∞}{ε_{λ}(λ)E_{λ,b}(λ, T_{c})}  dλ}{\int_{0}^{∞}{E_{λ,b}(λ, T_{c})}  dλ}

Breaking the integral into parts and introducing the blackbody functions, we then obtain

α = ε_{λ,1}  F_{(0→λ_{1})} + ε_{λ,2}[F_{(0→λ_{2})}  –  F_{(0→λ_{1})}] + ε_{λ,3}[1  –  F_{(0→λ_{2})}]

From Table 12.2

λ_{1}T_{c} = 1.5  μm × 2000  K = 3000  μm · K:\qquad F_{(0→λ_{1})} = 0.273

λ_{2}T_{c} = 10  μm × 2000  K = 20,000  μm · K:\qquad F_{(0→λ_{2})} = 0.986

Hence

α = 0.1 × 0.273 + 0.5(0.986 – 0.273) + 0.8(1 – 0.986) = 0.395

Comments:
1. The emissivity depends on the surface temperature T_{s}, while the absorptivity depends on the spectral distribution of the irradiation, which depends on the temperature of the source T_{c}.
2. The surface is not gray, αε. This result is to be expected. Since emission is associated with T_{s} = 500 K, its spectral maximum occurs at λ_{\max} ≈ 6 μm. In contrast, since irradiation is associated with emission from a source at T_{c} = 2000 K, its spectral maximum occurs at λ_{\max} ≈ 1.5 μm. Even though ε_{λ} and α_{λ} are equal, because they are not constant over the spectral ranges of both emission and irradiation, αε. For the prescribed spectral distribution of ε_{λ} = α_{λ}, ε and α decrease with increasing T_{s} and T_{c}, respectively, and it is only for T_{s} = T_{c} that ε = α. The foregoing expressions for ε and α may be used to determine their equivalent variation with T_{s} and T_{c}, and the following result is obtained:

12.10 p2
12.10 p3

Related Answered Questions

Question: 12.2

Verified Answer:

Known: Spectral distribution of surface irradiatio...