Question 12.10: A diffuse, fire brick wall of temperature Ts = 500 K has the...
A diffuse, fire brick wall of temperature T_{s} = 500 K has the spectral emissivity shown and is exposed to a bed of coals at 2000 K.
Determine the total, hemispherical emissivity and emissive power of the fire brick wall. What is the total absorptivity of the wall to irradiation resulting from emission by the coals?

Learn more on how we answer questions.
Known: Brick wall of surface temperature T_{s} = 500 K and prescribed ε_{λ}(λ) is exposed to coals at T_{c} = 2000 K.
Find:
1. Total, hemispherical emissivity of the fire brick wall.
2. Total emissive power of the brick wall.
3. Absorptivity of the wall to irradiation from the coals.
Schematic:
Assumptions:
1. Brick wall is opaque and diffuse.
2. Spectral distribution of irradiation at the brick wall approximates that due to emission from a blackbody at 2000 K.
Analysis:
1. The total, hemispherical emissivity follows from Equation 12.43.
ε(T) = \frac{\int_{0}^{∞}{ε_{λ}(λ, T)E_{λ,b}(λ, T)} dλ}{E_{b}(T)} (12.43)
ε(T_{s}) = \frac{\int_{0}^{∞}{ε_{λ}(λ)E_{λ,b}(λ, T_{s})} dλ}{E_{b}(T_{s})}
Breaking the integral into parts,
ε(T_{s}) = ε_{λ,1} \frac{\int_{0}^{λ_{1}}E_{λ,b} dλ}{E_{b}} + ε_{λ,2} \frac{\int_{λ_{1}}^{λ_{2}}E_{λ,b} dλ}{E_{b}} + ε_{λ,3} \frac{\int_{λ_{2}}^{∞}E_{λ,b} dλ}{E_{b}}
and introducing the blackbody functions, it follows that
ε(T_{s}) = ε_{λ,1} F_{(0→λ_{1})} + ε_{λ,2}[F_{(0→λ_{2})} – F_{(0→λ_{1})}] + ε_{λ,3}[1 – F_{(0→λ_{2})}]
From Table 12.2
TABLE 12.2 Blackbody Radiation Functions | |||
\pmb{\frac{I_{λ, b}(λ, T)}{I_{λ,b}(λ_{\max}, T)}} | \pmb{I_{λ, b}(λ, T)/σT^{5} (μm · K · sr)^{-1}} | \pmb{F_{(0 → λ)}} | λT (μm · K) |
0.000000 | 0.375034 × 10^{-27} | 0.000000 | 200 |
0.000000 | 0.490335 × 10^{-13} | 0.000000 | 400 |
0.000014 | 0.104046 × 10^{-8} | 0.000000 | 600 |
0.001372 | 0.991126 × 10^{-7} | 0.000016 | 800 |
0.016406 | 0.118505 × 10^{-5} | 0.000321 | 1,000 |
0.072534 | 0.523927 × 10^{-5} | 0.002134 | 1,200 |
0.186082 | 0.134411 × 10^{-4} | 0.007790 | 1,400 |
0.344904 | 0.249130 | 0.019718 | 1,600 |
0.519949 | 0.375568 | 0.039341 | 1,800 |
0.683123 | 0.493432 | 0.066728 | 2,000 |
0.816329 | 0.589649 × 10^{-4} | 0.100888 | 2,200 |
0.912155 | 0.658866 | 0.140256 | 2,400 |
0.970891 | 0.701292 | 0.183120 | 2,600 |
0.997123 | 0.720239 | 0.227897 | 2,800 |
1.000000 | 0.722318 × 10^{-4} | 0.250108 | 2,898 |
0.997143 | 0.720254 × 10^{-4} | 0.273232 | 3,000 |
0.977373 | 0.705974 | 0.318102 | 3,200 |
0.943551 | 0.681544 | 0.361735 | 3,400 |
0.900429 | 0.650396 | 0.403607 | 3,600 |
0.851737 | 0.615225 × 10^{-4} | 0.443382 | 3,800 |
0.800291 | 0.578064 | 0.480877 | 4,000 |
0.748139 | 0.540394 | 0.516014 | 4,200 |
0.696720 | 0.503253 | 0.548796 | 4,400 |
0.647004 | 0.467343 | 0.579280 | 4,600 |
0.599610 | 0.433109 | 0.607559 | 4,800 |
0.554898 | 0.400813 | 0.633747 | 5,000 |
0.513043 | 0.370580 × 10^{-4} | 0.658970 | 5,200 |
0.474092 | 0.342445 | 0.680360 | 5,400 |
0.438002 | 0.316376 | 0.701046 | 5,600 |
0.404671 | 0.292301 | 0.720158 | 5,800 |
0.373965 | 0.270121 | 0.737818 | 6,000 |
0.345724 | 0.249723 × 10^{-4} | 0.754140 | 6,200 |
0.319783 | 0.230985 | 0.769234 | 6,400 |
0.295973 | 0.213786 | 0.783199 | 6,600 |
0.274128 | 0.198008 | 0.796129 | 6,800 |
0.254090 | 0.183534 | 0.808109 | 7,000 |
0.235708 | 0.170256 × 10^{-4} | 0.819217 | 7,200 |
0.218842 | 0.158073 | 0.829527 | 7,400 |
0.203360 | 0.146891 | 0.839102 | 7,600 |
0.189143 | 0.136621 | 0.848005 | 7,800 |
0.176079 | 0.127185 | 0.856288 | 8,000 |
0.147819 | 0.106772 × 10^{-4} | 0.874608 | 8,500 |
0.124801 | 0.901463 × 10^{-5} | 0.890029 | 9,000 |
0.105956 | 0.765338 | 0.903085 | 9,500 |
0.090442 | 0.653279 × 10^{-5} | 0.914199 | 10,000 |
0.077600 | 0.560522 | 0.923710 | 10,500 |
0.066913 | 0.483321 | 0.931890 | 11,000 |
0.057970 | 0.418725 | 0.939959 | 11,500 |
0.050448 | 0.364394 × 10^{-5} | 0.945098 | 12,000 |
0.038689 | 0.279457 | 0.955139 | 13,000 |
0.030131 | 0.217641 | 0.962898 | 14,000 |
0.023794 | 0.171866 × 10^{-5} | 0.969981 | 15,000 |
0.019026 | 0.137429 | 0.973814 | 16,000 |
0.012574 | 0.908240 × 10^{-6} | 0.980860 | 18,000 |
0.008629 | 0.623310 | 0.985602 | 20,000 |
0.003828 | 0.276474 | 0.992215 | 25,000 |
0.001945 | 0.140469 × 10^{-6} | 0.995340 | 30,000 |
0.000656 | 0.473891 × 10^{-7} | 0.997967 | 40,000 |
0.000279 | 0.201605 | 0.998953 | 50,000 |
0.000058 | 0.418597 × 10^{-8} | 0.999713 | 75,000 |
0.000019 | 0.135752 | 0.999905 | 100,000 |
λ_{1}T_{s} = 1.5 μm × 500 K = 750 μm · K:\qquad F_{(0→λ_{1})} = 0.000
λ_{2}T_{s} = 10 μm × 500 K = 5000 μm · K:\qquad F_{(0→λ_{2})} = 0.634
Hence
ε(T_{s}) = 0.1 × 0 + 0.5 × 0.634 + 0.8 (1 – 0.634) = 0.610
2. From Equations 12.32 and 12.36, the total emissive power is
E_{b} = σT^{4} (12.32)
ε(T) \equiv \frac{E(T)}{E_{b}(T)} (12.36)
E(T_{s}) = ε(T_{s})E_{b}(T_{s}) = ε(T_{s})σT^{4}_{s}
E(T_{s}) = 0.61 × 5.67 × 10^{-8} W/m^{2} · K^{4}(500 K)^{4} = 2162 W/m^{2}
3. From Equation 12.52, the total absorptivity of the wall to radiation from the coals is
α = \frac{\int_{0}^{∞}{α_{λ}(λ)G_{λ}(λ)} dλ}{\int_{0}^{∞}{G_{λ}(λ)} dλ} (12.52)
Since the surface is diffuse, α_{λ}(λ) = ε_{λ}(λ). Moreover, since the spectral distribution of the irradiation approximates that due to emission from a blackbody at 2000 K, G_{λ}(λ) ∝ E_{λ,b}(λ, T_{c}). It follows that
α = \frac{\int_{0}^{∞}{ε_{λ}(λ)E_{λ,b}(λ, T_{c})} dλ}{\int_{0}^{∞}{E_{λ,b}(λ, T_{c})} dλ}
Breaking the integral into parts and introducing the blackbody functions, we then obtain
α = ε_{λ,1} F_{(0→λ_{1})} + ε_{λ,2}[F_{(0→λ_{2})} – F_{(0→λ_{1})}] + ε_{λ,3}[1 – F_{(0→λ_{2})}]
From Table 12.2
λ_{1}T_{c} = 1.5 μm × 2000 K = 3000 μm · K:\qquad F_{(0→λ_{1})} = 0.273
λ_{2}T_{c} = 10 μm × 2000 K = 20,000 μm · K:\qquad F_{(0→λ_{2})} = 0.986
Hence
α = 0.1 × 0.273 + 0.5(0.986 – 0.273) + 0.8(1 – 0.986) = 0.395
Comments:
1. The emissivity depends on the surface temperature T_{s}, while the absorptivity depends on the spectral distribution of the irradiation, which depends on the temperature of the source T_{c}.
2. The surface is not gray, α ≠ ε. This result is to be expected. Since emission is associated with T_{s} = 500 K, its spectral maximum occurs at λ_{\max} ≈ 6 μm. In contrast, since irradiation is associated with emission from a source at T_{c} = 2000 K, its spectral maximum occurs at λ_{\max} ≈ 1.5 μm. Even though ε_{λ} and α_{λ} are equal, because they are not constant over the spectral ranges of both emission and irradiation, α ≠ ε. For the prescribed spectral distribution of ε_{λ} = α_{λ}, ε and α decrease with increasing T_{s} and T_{c}, respectively, and it is only for T_{s} = T_{c} that ε = α. The foregoing expressions for ε and α may be used to determine their equivalent variation with T_{s} and T_{c}, and the following result is obtained:

