Question 12.6: A diffuse surface at 1600 K has the spectral, hemispherical ...

A diffuse surface at 1600 K has the spectral, hemispherical emissivity shown as follows.

Determine the total, hemispherical emissivity and the total emissive power. At what wavelength will the spectral emissive power be a maximum?

12.6 p1
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Known: Spectral, hemispherical emissivity of a diffuse surface at 1600 K.

Find:
1. Total, hemispherical emissivity.
2. Total emissive power.
3. Wavelength at which spectral emissive power will be a maximum.

Assumptions: Surface is a diffuse emitter.

Analysis:
1. The total, hemispherical emissivity is given by Equation 12.43, where the integration may be performed in parts as follows:

ε(T) = \frac{\int_{0}^{∞}{ε_{λ}(λ, T)E_{λ,b}(λ, T)}dλ}{E_{b}(T)}              (12.43)

ε = \frac{\int_{0}^{∞}{ε_{λ}E_{λ,b}}dλ}{E_{b}} = \frac{ε_{1}\int_{0}^{2} {E_{λ,b}}dλ}{E_{b}} + \frac{ε_{2}\int_{2}^{5} {E_{λ,b}}dλ}{E_{b}}

or

ε = ε_{1}F_{(0→2  μm)} + ε_{2}[F_{(0→5  μm)}  –  F_{(0→2  μm)}]

From Table 12.2 we obtain

TABLE 12.2 Blackbody Radiation Functions
\pmb{\frac{I_{λ, b}(λ, T)}{I_{λ,b}(λ_{\max}, T)}} \pmb{I_{λ, b}(λ, T)/σT^{5} (μm · K · sr)^{-1}} \pmb{F_{(0 → λ)}} λT (μm · K)
0.000000 0.375034 × 10^{-27} 0.000000 200
0.000000 0.490335 × 10^{-13} 0.000000 400
0.000014 0.104046 × 10^{-8} 0.000000 600
0.001372 0.991126 × 10^{-7} 0.000016 800
0.016406 0.118505 × 10^{-5} 0.000321 1,000
0.072534 0.523927 × 10^{-5} 0.002134 1,200
0.186082 0.134411 × 10^{-4} 0.007790 1,400
0.344904 0.249130 0.019718 1,600
0.519949 0.375568 0.039341 1,800
0.683123 0.493432 0.066728 2,000
0.816329 0.589649 × 10^{-4} 0.100888 2,200
0.912155 0.658866 0.140256 2,400
0.970891 0.701292 0.183120 2,600
0.997123 0.720239 0.227897 2,800
1.000000 0.722318 × 10^{-4} 0.250108 2,898
0.997143 0.720254 × 10^{-4} 0.273232 3,000
0.977373 0.705974 0.318102 3,200
0.943551 0.681544 0.361735 3,400
0.900429 0.650396 0.403607 3,600
0.851737 0.615225 × 10^{-4} 0.443382 3,800
0.800291 0.578064 0.480877 4,000
0.748139 0.540394 0.516014 4,200
0.696720 0.503253 0.548796 4,400
0.647004 0.467343 0.579280 4,600
0.599610 0.433109 0.607559 4,800
0.554898 0.400813 0.633747 5,000
0.513043 0.370580 × 10^{-4} 0.658970 5,200
0.474092 0.342445 0.680360 5,400
0.438002 0.316376 0.701046 5,600
0.404671 0.292301 0.720158 5,800
0.373965 0.270121 0.737818 6,000
0.345724 0.249723 × 10^{-4} 0.754140 6,200
0.319783 0.230985 0.769234 6,400
0.295973 0.213786 0.783199 6,600
0.274128 0.198008 0.796129 6,800
0.254090 0.183534 0.808109 7,000
0.235708 0.170256 × 10^{-4} 0.819217 7,200
0.218842 0.158073 0.829527 7,400
0.203360 0.146891 0.839102 7,600
0.189143 0.136621 0.848005 7,800
0.176079 0.127185 0.856288 8,000
0.147819 0.106772 × 10^{-4} 0.874608 8,500
0.124801 0.901463 × 10^{-5} 0.890029 9,000
0.105956 0.765338 0.903085 9,500
0.090442 0.653279 × 10^{-5} 0.914199 10,000
0.077600 0.560522 0.923710 10,500
0.066913 0.483321 0.931890 11,000
0.057970 0.418725 0.939959 11,500
0.050448 0.364394 × 10^{-5} 0.945098 12,000
0.038689 0.279457 0.955139 13,000
0.030131 0.217641 0.962898 14,000
0.023794 0.171866 × 10^{-5} 0.969981 15,000
0.019026 0.137429 0.973814 16,000
0.012574 0.908240 × 10^{-6} 0.980860 18,000
0.008629 0.623310 0.985602 20,000
0.003828 0.276474 0.992215 25,000
0.001945 0.140469 × 10^{-6} 0.995340 30,000
0.000656 0.473891 × 10^{-7} 0.997967 40,000
0.000279 0.201605 0.998953 50,000
0.000058 0.418597 × 10^{-8} 0.999713 75,000
0.000019 0.135752 0.999905 100,000

λ_{1}T = 2  μm × 1600  K = 3200  μm · K:\qquad F_{(0→2  μm)} = 0.318

λ_{2}T = 5  μm × 1600  K = 8000  μm · K:\qquad F_{(0→5  μm)} = 0.856

Hence

ε = 0.4 × 0.318 + 0.8[0.856 – 0.318] = 0.558

2. From Equation 12.36 the total emissive power is

ε(T) \equiv \frac{E(T)}{E_{b}(T)}              (12.36)

E = εE_{b} = εσT^{4}\\ E = 0.558(5.67 × 10^{-8}  W/m^{2} · K^{4})(1600  K)^{4} = 207  kW/m^{2}

3. If the surface emitted as a blackbody or if its emissivity were a constant, independent of λ, the wavelength corresponding to maximum spectral emission could be obtained from Wien’s displacement law. However, because ε_{λ} varies with λ, it is not immediately obvious where peak emission occurs. From Equation 12.31 we know that

λ_{\max}T = C_{3}              (12.31)

λ_{\max} = \frac{2898  μm · K}{1600  K} = 1.81  μm

The spectral emissive power at this wavelength may be obtained by using Equation 12.40 with Table 12.2. That is,

ε_{λ}(λ, T) \equiv \frac{E_{λ}(λ, T)}{E_{λ,b}(λ, T)}              (12.40)

E_{λ}(λ_{\max}, T) = ε_{λ}(λ_{\max})E_{λ,b}(λ_{\max}, T)

or, since the surface is a diffuse emitter,

E_{λ}(λ_{\max}, T) = \pi ε_{λ}(λ_{\max})I_{λ,b}(λ_{\max}, T)\\ = \pi ε_{λ}(λ_{\max})\frac{I_{λ,b}(λ_{\max}, T)}{σT^{5}} × σT^{5}

E_{λ}(1.81  μm, 1600  K) = \pi × 0.4 × 0.722 × 10^{-4}  (μm · K · sr)^{-1} × 5.67 × 10^{-8}  W/m^{2} · K^{4} × (1600  K)^{5} = 54  kW/m^{2} · μm

Since ε_{λ} = 0.4 from λ = 0 to λ = 2 μm, the foregoing result provides the maximum spectral emissive power for the region λ < 2 μm. However, with the change in ε_{λ} that occurs at λ = 2 μm, the value of E_{λ} at λ = 2 μm may be larger than that for λ = 1.81 μm. To determine whether this is, in fact, the case, we compute

E_{λ}(λ_{1}, T) = \pi ε_{λ}(λ_{1})\frac{I_{λ,b}(λ_{1}, T)}{σT^{5}} × σT^{5}

where, for λ_{1}T = 3200  μm · K, [I_{λ,b}(λ_{1}, T)/σT^{5}] = 0.706 × 10^{-4}  (μm · K · sr)^{-1}. Hence

E_{λ}(2  μm, 1600  K) = \pi × 0.80 × 0.706 × 10^{-4}  (μm · K · sr)^{-1} × 5.67 × 10^{-8}  W/m^{2} · K^{4}  (1600  K)^{5}

E_{λ}(2  μm, 1600  K) = 105.5  kW/m^{2} · μm > E_{λ}(1.81  μm, 1600  K)

and peak emission occurs at

λ = λ_{1} = 2  μm

Comments: For the prescribed spectral distribution of ε_{λ}, the spectral emissive power will vary with wavelength as shown.

12.6 p2

Related Answered Questions

Question: 12.2

Verified Answer:

Known: Spectral distribution of surface irradiatio...