Question 12.6: A diffuse surface at 1600 K has the spectral, hemispherical ...
A diffuse surface at 1600 K has the spectral, hemispherical emissivity shown as follows.
Determine the total, hemispherical emissivity and the total emissive power. At what wavelength will the spectral emissive power be a maximum?

Learn more on how we answer questions.
Known: Spectral, hemispherical emissivity of a diffuse surface at 1600 K.
Find:
1. Total, hemispherical emissivity.
2. Total emissive power.
3. Wavelength at which spectral emissive power will be a maximum.
Assumptions: Surface is a diffuse emitter.
Analysis:
1. The total, hemispherical emissivity is given by Equation 12.43, where the integration may be performed in parts as follows:
ε(T) = \frac{\int_{0}^{∞}{ε_{λ}(λ, T)E_{λ,b}(λ, T)}dλ}{E_{b}(T)} (12.43)
ε = \frac{\int_{0}^{∞}{ε_{λ}E_{λ,b}}dλ}{E_{b}} = \frac{ε_{1}\int_{0}^{2} {E_{λ,b}}dλ}{E_{b}} + \frac{ε_{2}\int_{2}^{5} {E_{λ,b}}dλ}{E_{b}}
or
ε = ε_{1}F_{(0→2 μm)} + ε_{2}[F_{(0→5 μm)} – F_{(0→2 μm)}]
From Table 12.2 we obtain
TABLE 12.2 Blackbody Radiation Functions | |||
\pmb{\frac{I_{λ, b}(λ, T)}{I_{λ,b}(λ_{\max}, T)}} | \pmb{I_{λ, b}(λ, T)/σT^{5} (μm · K · sr)^{-1}} | \pmb{F_{(0 → λ)}} | λT (μm · K) |
0.000000 | 0.375034 × 10^{-27} | 0.000000 | 200 |
0.000000 | 0.490335 × 10^{-13} | 0.000000 | 400 |
0.000014 | 0.104046 × 10^{-8} | 0.000000 | 600 |
0.001372 | 0.991126 × 10^{-7} | 0.000016 | 800 |
0.016406 | 0.118505 × 10^{-5} | 0.000321 | 1,000 |
0.072534 | 0.523927 × 10^{-5} | 0.002134 | 1,200 |
0.186082 | 0.134411 × 10^{-4} | 0.007790 | 1,400 |
0.344904 | 0.249130 | 0.019718 | 1,600 |
0.519949 | 0.375568 | 0.039341 | 1,800 |
0.683123 | 0.493432 | 0.066728 | 2,000 |
0.816329 | 0.589649 × 10^{-4} | 0.100888 | 2,200 |
0.912155 | 0.658866 | 0.140256 | 2,400 |
0.970891 | 0.701292 | 0.183120 | 2,600 |
0.997123 | 0.720239 | 0.227897 | 2,800 |
1.000000 | 0.722318 × 10^{-4} | 0.250108 | 2,898 |
0.997143 | 0.720254 × 10^{-4} | 0.273232 | 3,000 |
0.977373 | 0.705974 | 0.318102 | 3,200 |
0.943551 | 0.681544 | 0.361735 | 3,400 |
0.900429 | 0.650396 | 0.403607 | 3,600 |
0.851737 | 0.615225 × 10^{-4} | 0.443382 | 3,800 |
0.800291 | 0.578064 | 0.480877 | 4,000 |
0.748139 | 0.540394 | 0.516014 | 4,200 |
0.696720 | 0.503253 | 0.548796 | 4,400 |
0.647004 | 0.467343 | 0.579280 | 4,600 |
0.599610 | 0.433109 | 0.607559 | 4,800 |
0.554898 | 0.400813 | 0.633747 | 5,000 |
0.513043 | 0.370580 × 10^{-4} | 0.658970 | 5,200 |
0.474092 | 0.342445 | 0.680360 | 5,400 |
0.438002 | 0.316376 | 0.701046 | 5,600 |
0.404671 | 0.292301 | 0.720158 | 5,800 |
0.373965 | 0.270121 | 0.737818 | 6,000 |
0.345724 | 0.249723 × 10^{-4} | 0.754140 | 6,200 |
0.319783 | 0.230985 | 0.769234 | 6,400 |
0.295973 | 0.213786 | 0.783199 | 6,600 |
0.274128 | 0.198008 | 0.796129 | 6,800 |
0.254090 | 0.183534 | 0.808109 | 7,000 |
0.235708 | 0.170256 × 10^{-4} | 0.819217 | 7,200 |
0.218842 | 0.158073 | 0.829527 | 7,400 |
0.203360 | 0.146891 | 0.839102 | 7,600 |
0.189143 | 0.136621 | 0.848005 | 7,800 |
0.176079 | 0.127185 | 0.856288 | 8,000 |
0.147819 | 0.106772 × 10^{-4} | 0.874608 | 8,500 |
0.124801 | 0.901463 × 10^{-5} | 0.890029 | 9,000 |
0.105956 | 0.765338 | 0.903085 | 9,500 |
0.090442 | 0.653279 × 10^{-5} | 0.914199 | 10,000 |
0.077600 | 0.560522 | 0.923710 | 10,500 |
0.066913 | 0.483321 | 0.931890 | 11,000 |
0.057970 | 0.418725 | 0.939959 | 11,500 |
0.050448 | 0.364394 × 10^{-5} | 0.945098 | 12,000 |
0.038689 | 0.279457 | 0.955139 | 13,000 |
0.030131 | 0.217641 | 0.962898 | 14,000 |
0.023794 | 0.171866 × 10^{-5} | 0.969981 | 15,000 |
0.019026 | 0.137429 | 0.973814 | 16,000 |
0.012574 | 0.908240 × 10^{-6} | 0.980860 | 18,000 |
0.008629 | 0.623310 | 0.985602 | 20,000 |
0.003828 | 0.276474 | 0.992215 | 25,000 |
0.001945 | 0.140469 × 10^{-6} | 0.995340 | 30,000 |
0.000656 | 0.473891 × 10^{-7} | 0.997967 | 40,000 |
0.000279 | 0.201605 | 0.998953 | 50,000 |
0.000058 | 0.418597 × 10^{-8} | 0.999713 | 75,000 |
0.000019 | 0.135752 | 0.999905 | 100,000 |
λ_{1}T = 2 μm × 1600 K = 3200 μm · K:\qquad F_{(0→2 μm)} = 0.318
λ_{2}T = 5 μm × 1600 K = 8000 μm · K:\qquad F_{(0→5 μm)} = 0.856
Hence
ε = 0.4 × 0.318 + 0.8[0.856 – 0.318] = 0.558
2. From Equation 12.36 the total emissive power is
ε(T) \equiv \frac{E(T)}{E_{b}(T)} (12.36)
E = εE_{b} = εσT^{4}\\ E = 0.558(5.67 × 10^{-8} W/m^{2} · K^{4})(1600 K)^{4} = 207 kW/m^{2}
3. If the surface emitted as a blackbody or if its emissivity were a constant, independent of λ, the wavelength corresponding to maximum spectral emission could be obtained from Wien’s displacement law. However, because ε_{λ} varies with λ, it is not immediately obvious where peak emission occurs. From Equation 12.31 we know that
λ_{\max}T = C_{3} (12.31)
λ_{\max} = \frac{2898 μm · K}{1600 K} = 1.81 μm
The spectral emissive power at this wavelength may be obtained by using Equation 12.40 with Table 12.2. That is,
ε_{λ}(λ, T) \equiv \frac{E_{λ}(λ, T)}{E_{λ,b}(λ, T)} (12.40)
E_{λ}(λ_{\max}, T) = ε_{λ}(λ_{\max})E_{λ,b}(λ_{\max}, T)
or, since the surface is a diffuse emitter,
E_{λ}(λ_{\max}, T) = \pi ε_{λ}(λ_{\max})I_{λ,b}(λ_{\max}, T)\\ = \pi ε_{λ}(λ_{\max})\frac{I_{λ,b}(λ_{\max}, T)}{σT^{5}} × σT^{5}
E_{λ}(1.81 μm, 1600 K) = \pi × 0.4 × 0.722 × 10^{-4} (μm · K · sr)^{-1} × 5.67 × 10^{-8} W/m^{2} · K^{4} × (1600 K)^{5} = 54 kW/m^{2} · μm
Since ε_{λ} = 0.4 from λ = 0 to λ = 2 μm, the foregoing result provides the maximum spectral emissive power for the region λ < 2 μm. However, with the change in ε_{λ} that occurs at λ = 2 μm, the value of E_{λ} at λ = 2 μm may be larger than that for λ = 1.81 μm. To determine whether this is, in fact, the case, we compute
E_{λ}(λ_{1}, T) = \pi ε_{λ}(λ_{1})\frac{I_{λ,b}(λ_{1}, T)}{σT^{5}} × σT^{5}
where, for λ_{1}T = 3200 μm · K, [I_{λ,b}(λ_{1}, T)/σT^{5}] = 0.706 × 10^{-4} (μm · K · sr)^{-1}. Hence
E_{λ}(2 μm, 1600 K) = \pi × 0.80 × 0.706 × 10^{-4} (μm · K · sr)^{-1} × 5.67 × 10^{-8} W/m^{2} · K^{4} (1600 K)^{5}
E_{λ}(2 μm, 1600 K) = 105.5 kW/m^{2} · μm > E_{λ}(1.81 μm, 1600 K)
and peak emission occurs at
λ = λ_{1} = 2 μm
Comments: For the prescribed spectral distribution of ε_{λ}, the spectral emissive power will vary with wavelength as shown.
