Question 14.12: A feedstock of pure n-butane is cracked at 750 K and 1.2 bar...
A feedstock of pure n-butane is cracked at 750 K and 1.2 bar to produce olefins. Only two reactions have favorable equilibrium conversions at these conditions:
\mathrm{C}_4 \mathrm{H}_{10} \rightarrow \mathrm{C}_2 \mathrm{H}_4+\mathrm{C}_2 \mathrm{H}_6 (I)
\mathrm{C}_4 \mathrm{H}_{10} \rightarrow \mathrm{C}_3 \mathrm{H}_6+\mathrm{CH}_4 (II)
If these reactions reach equilibrium, what is the product composition?
With data from App. C and procedures illustrated in Ex. 14.4, the equilibrium constants at 750 K are found to be:
K_1=3.856 \quad \text { and } \quad K_{11}=268.4
Learn more on how we answer questions.
Equations relating the product composition to the reaction coordinates are developed
as in Ex. 14.3. With a basis of 1 mol of n-butane feed, they become:
y_{\mathrm{C}_4 \mathrm{H}_{10}}=\frac{1-\varepsilon_{\mathrm{I}}-\varepsilon_{\mathrm{II}}}{1+\varepsilon_{\mathrm{I}}+\varepsilon_{\mathrm{II}}}
y_{\mathrm{C}_2 \mathrm{H}_4}=y_{\mathrm{C}_2 \mathrm{H}_6}=\frac{\varepsilon_{\mathrm{I}}}{1+\varepsilon_{\mathrm{I}}+\varepsilon_{\mathrm{II}}} \quad y_{\mathrm{C}_3 \mathrm{H}_6}=y_{\mathrm{CH}_4}=\frac{\varepsilon_{\mathrm{II}}}{1+\varepsilon_{\mathrm{I}}+\varepsilon_{\mathrm{II}}}The equilibrium relations, by Eq. (14.40), are:
\prod_i\left(y_i\right)^{\nu_{i, j}}=\left(\frac{P}{P^0}\right)^{-\nu_j} K_j (14.40)
\frac{y_{\mathrm{C}_2 \mathrm{H}_4} y_{\mathrm{C}_2 \mathrm{H}_6}}{y_{\mathrm{C}_4 \mathrm{H}_{10}}}=\left(\frac{P}{P^{\circ}}\right)^{-1} K_{\mathrm{I}} \quad \frac{y_{\mathrm{C}_3 \mathrm{H}_6} y_{\mathrm{CH}_4}}{y_{\mathrm{C}_4 \mathrm{H}_{10}}}=\left(\frac{P}{P^{\circ}}\right)^{-1} K_{\mathrm{II}}
Combining these equilibrium equations with the mole-fraction equations yields:
\frac{\varepsilon_{\mathrm{I}}^2}{\left(1-\varepsilon_{\mathrm{I}}-\varepsilon_{\mathrm{II}}\right)\left(1+\varepsilon_{\mathrm{I}}+\varepsilon_{\mathrm{II}}\right)}=\left(\frac{P}{P^{\circ}}\right)^{-1} K_{\mathrm{I}} (A)
\frac{\varepsilon_{\mathrm{II}}^2}{\left(1-\varepsilon_{\mathrm{I}}-\varepsilon_{\mathrm{II}}\right)\left(1+\varepsilon_{\mathrm{I}}+\varepsilon_{\mathrm{II}}\right)}=\left(\frac{P}{P^{\circ}}\right)^{-1} K_{\mathrm{II}} (B)
Dividing Eq. (B) by Eq. (A) and solving for εII yields:
\varepsilon_{\mathrm{II}}=\kappa \varepsilon_{\mathrm{I}}
where \kappa \equiv\left(\frac{K_{\mathrm{II}}}{K_{\mathrm{I}}}\right)^{1 / 2}
Combining Eqs. (A) and (C) to eliminate εII, and then solving for εI gives:
\varepsilon_{\mathrm{I}}=\left[\frac{K_{\mathrm{I}}\left(P^{\circ} / P\right)}{1+K_{\mathrm{I}}\left(P^{\circ} / P\right)(\kappa+1)^2}\right]^{1 / 2} (E)
Substitution of numerical values in Eqs. (D), (E), and (C) yields:
\kappa=\left(\frac{268.4}{3.856}\right)^{1 / 2}=8.343
\varepsilon_{\mathrm{I}}=\left[\frac{(3.856)(1 / 1.2)}{1+(3.856)(1 / 1.2)(9.343)^2}\right]^{1 / 2}=0.1068
\varepsilon_{\text {II }}=(8.343)(0.1068)=0.8914
The product-gas composition for these reaction coordinates is:
y_{\mathrm{C}_4 \mathrm{H}_{10}}=0.0010 \quad y_{\mathrm{C}_2 \mathrm{H}_4}=y_{\mathrm{C}_2 \mathrm{H}_6}=0.0534 \quad y_{\mathrm{C}_3 \mathrm{H}_6}=y_{\mathrm{CH}_4}=0.4461For this simple reaction scheme, analytical solution is possible. However, this is unusual. In most cases the solution of multireaction-equilibrium problems requires numerical techniques.