Question 14.12: A feedstock of pure n-butane is cracked at 750 K and 1.2 bar...

A feedstock of pure n-butane is cracked at 750 K and 1.2 bar to produce olefins. Only two reactions have favorable equilibrium conversions at these conditions:

\mathrm{C}_4 \mathrm{H}_{10} \rightarrow \mathrm{C}_2 \mathrm{H}_4+\mathrm{C}_2 \mathrm{H}_6       (I)

\mathrm{C}_4 \mathrm{H}_{10} \rightarrow \mathrm{C}_3 \mathrm{H}_6+\mathrm{CH}_4     (II)

If these reactions reach equilibrium, what is the product composition?

With data from App. C and procedures illustrated in Ex. 14.4, the equilibrium constants at 750 K are found to be:

K_1=3.856 \quad    \text { and }    \quad K_{11}=268.4

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equations relating the product composition to the reaction coordinates are developed
as in Ex. 14.3. With a basis of 1 mol of n-butane feed, they become:

y_{\mathrm{C}_4 \mathrm{H}_{10}}=\frac{1-\varepsilon_{\mathrm{I}}-\varepsilon_{\mathrm{II}}}{1+\varepsilon_{\mathrm{I}}+\varepsilon_{\mathrm{II}}}

y_{\mathrm{C}_2 \mathrm{H}_4}=y_{\mathrm{C}_2 \mathrm{H}_6}=\frac{\varepsilon_{\mathrm{I}}}{1+\varepsilon_{\mathrm{I}}+\varepsilon_{\mathrm{II}}} \quad                 y_{\mathrm{C}_3 \mathrm{H}_6}=y_{\mathrm{CH}_4}=\frac{\varepsilon_{\mathrm{II}}}{1+\varepsilon_{\mathrm{I}}+\varepsilon_{\mathrm{II}}}

The equilibrium relations, by Eq. (14.40), are:

\prod_i\left(y_i\right)^{\nu_{i, j}}=\left(\frac{P}{P^0}\right)^{-\nu_j} K_j       (14.40)

\frac{y_{\mathrm{C}_2 \mathrm{H}_4} y_{\mathrm{C}_2 \mathrm{H}_6}}{y_{\mathrm{C}_4 \mathrm{H}_{10}}}=\left(\frac{P}{P^{\circ}}\right)^{-1} K_{\mathrm{I}}                     \quad \frac{y_{\mathrm{C}_3 \mathrm{H}_6} y_{\mathrm{CH}_4}}{y_{\mathrm{C}_4 \mathrm{H}_{10}}}=\left(\frac{P}{P^{\circ}}\right)^{-1} K_{\mathrm{II}}

Combining these equilibrium equations with the mole-fraction equations yields:

\frac{\varepsilon_{\mathrm{I}}^2}{\left(1-\varepsilon_{\mathrm{I}}-\varepsilon_{\mathrm{II}}\right)\left(1+\varepsilon_{\mathrm{I}}+\varepsilon_{\mathrm{II}}\right)}=\left(\frac{P}{P^{\circ}}\right)^{-1} K_{\mathrm{I}}         (A)

\frac{\varepsilon_{\mathrm{II}}^2}{\left(1-\varepsilon_{\mathrm{I}}-\varepsilon_{\mathrm{II}}\right)\left(1+\varepsilon_{\mathrm{I}}+\varepsilon_{\mathrm{II}}\right)}=\left(\frac{P}{P^{\circ}}\right)^{-1} K_{\mathrm{II}}       (B)

Dividing Eq. (B) by Eq. (A) and solving for εII yields:

\varepsilon_{\mathrm{II}}=\kappa \varepsilon_{\mathrm{I}}

where        \kappa \equiv\left(\frac{K_{\mathrm{II}}}{K_{\mathrm{I}}}\right)^{1 / 2}

Combining Eqs. (A) and (C) to eliminate εII, and then solving for εI gives:

\varepsilon_{\mathrm{I}}=\left[\frac{K_{\mathrm{I}}\left(P^{\circ} / P\right)}{1+K_{\mathrm{I}}\left(P^{\circ} / P\right)(\kappa+1)^2}\right]^{1 / 2}         (E)

Substitution of numerical values in Eqs. (D), (E), and (C) yields:

\kappa=\left(\frac{268.4}{3.856}\right)^{1 / 2}=8.343

\varepsilon_{\mathrm{I}}=\left[\frac{(3.856)(1 / 1.2)}{1+(3.856)(1 / 1.2)(9.343)^2}\right]^{1 / 2}=0.1068

\varepsilon_{\text {II }}=(8.343)(0.1068)=0.8914

The product-gas composition for these reaction coordinates is:

y_{\mathrm{C}_4 \mathrm{H}_{10}}=0.0010         \quad y_{\mathrm{C}_2 \mathrm{H}_4}=y_{\mathrm{C}_2 \mathrm{H}_6}=0.0534         \quad y_{\mathrm{C}_3 \mathrm{H}_6}=y_{\mathrm{CH}_4}=0.4461

For this simple reaction scheme, analytical solution is possible. However, this is unusual. In most cases the solution of multireaction-equilibrium problems requires numerical techniques.

Related Answered Questions

Question: 14.4

Verified Answer:

Hydration of ethylene means reaction of ethylene w...