Holooly Plus Logo

Question 8.E.J: (a) Find the pH of a solution prepared by dissolving 1.00 g ...

(a) Find the pH of a solution prepared by dissolving 1.00 g of glycine amide hydrochloride (Table 8-2) plus 1.00 g of glycine amide in 0.100 L.

(b) How many grams of glycine amide should be added to 1.00 g of glycine amide hydrochloride to give 100 mL of solution with pH 8.00?
(c) What would be the pH if the solution in part (a) were mixed with 5.00 mL of 0.100 M HCl?
(d) What would be the pH if the solution in part (c) were mixed with 10.00 mL of 0.100 M NaOH?
(e) What would be the pH if the solution in part (a) were mixed with 90.46 mL of 0.100 M NaOH? (This is exactly the quantity of NaOH required to neutralize the glycine amide hydrochloride.)

TABLE 8-2      Structures and pK_{a} values for common buffers^{a,b,c,d}
 

 

Name

 

 

Structure

pK_{a}^{e}


μ = 0    μ = 0.1 M

 

 

Formula mass

\Delta (pK_{a})/\Delta T

(K^{-1})

N-2-Acetamidoiminodiacetic acid

(ADA)

(CO_{2}H) 1.59 190.15
N-Tris(hydroxymethyl)methylglycine

(TRICINE)

(HOCH_{2})_{3}C\overset{+}{N}H_{2}CH_{2}CO_{2}H 2.02 (CO_{2}H) 179.17 −0.003
Phosphoric acid H_{3}PO_{4} 2.15 (pK_{1}) 1.92 98.00 0.005
N,N-Bis(2-hydroxyethyl)glycine

(BICINE)

(HOCH_{2})_{2}\overset{+}{N}HCH_{2}CO_{2}H 2.23 (CO_{2}H) 163.17
ADA (see above) 2.48 (CO_{2}H) 2.31 190.15
Piperazine-N,N′-bis(2-ethanesulfonic

acid) (PIPES)

(pK_{1}) 2.67 302.37
Citric acid HO_{2}CCH_{2}\overset{\begin{matrix} OH \\ \mid \end{matrix} }{\underset{\begin{matrix} \mid \\ CO_{2}H \end{matrix} }{C}}CH_{2}CO_{2}H 3.13 (pK_{1}) 2.90 192.12 −0.002
Glycylglycine H_{3}\overset{+}{N}CH_{2}\overset{\begin{matrix} O \\ \parallel \end{matrix} }{C}NHCH_{2}CO_{2}H 3.14 (CO_{2}H) 3.11 132.12 0.000
Piperazine-N,N′-bis(3-propanesulfonic

acid) (PIPPS)

(pK_{1}) 3.79 330.42
Piperazine-N,N′-bis(4-butanesulfonic

acid) (PIPBS)

(pK_{1}) 4.29 358.47
N,N′-Diethylpiperazine

dihydrochloride (DEPP-2HCl)

(pK_{1}) 4.48 215.16
Citric acid (see above) 4.76 (pK_{2}) 4.35 192.12 −0.001
Acetic acid CH_{3}CO_{2}H 4.76 4.62 60.05 0.000
N,N′-Diethylethylenediamine-N,N′-

bis(3-propanesulfonic acid)

(DESPEN)

^{- }O_{3}S(CH_{2})_{3}\overset{+}{\underset{\begin{matrix} \mid \\ CH_{3}CH_{2} \end{matrix} }{N}}HCH_{2}CH_{2}H\overset{+}{\underset{\begin{matrix} \mid \\ CH_{2}CH_{3} \end{matrix} }{N}}(CH_{2})_{3}SO_{3}^{- } (pK_{1}) 5.62 360.49
2-(N-Morpholino)ethanesulfonic acid

(MES)

6.27 6.06 195.24 −0.009
Citric acid (see above) 6.40 (pK_{3}) 5.70 192.12 0.002
N,N,N′,N′-Tetraethylethylenediamine

dihydrochloride (TEEN·2HCl)

Et_{2}\overset{+}{N}HCH_{2}CH_{2}H\overset{+}{N}Et_{2}\cdot2Cl^{- } (pK_{1}) 6.58 245.23
l,3-Bis[tris(hydroxymethyl)methyl-

amino] propane hydrochloride

(BIS-TRIS propane-2HCl)

(HOCH_{2})_{3}C\overset{+}{N}H_{2}(CH_{2})_{3}\overset{+}{\underset{\begin{matrix} \mid \\ (HOCH_{2})_{3}C \end{matrix} }{N}}H_{2}\cdot2Cl^{- } 6.65 (pK_{1}) 355.26
ADA (see above) 6.84 (NH) 6.67 190.15 −0.007

a. The protonated form of each molecule is shown. Acidic hydrogen atoms are shown in bold type. pK_{a} is for 25°C.

b. Many buffers in this table are widely used in biomedical research because of their weak metal binding and physiologic inertness (C. L. Bering, J. Chem. Ed. 1987, 64, 803). In one study, where MES and MOPS had no discernible affinity for Cu^{2+}, a minor impurity in HEPES and HEPPS had a strong affinity for Cu^{2+} and MOPSO bound Cu^{2+} stoichiometrically (H. E. Marsh, Y.-P. Chin, L. Sigg, R. Hari, and H. Xu, Anal. Chem. 2003, 75, 671). ADA, BICINE, ACES, and TES have some metal-binding ability (R. Nakon and C. R. Krishnamoorthy, Science 1983, 221, 749). Lutidine buffers for the pH range 3 to 8 with limited metal-binding power have been described by U. Bips, H. Elias, M. Hauröder, G. Kleinhans, S. Pfeifer, and K. J. Wannowius, Inorg.
Chem. 1983, 22, 3862.

c. Some data from R. N. Goldberg, N. Kishore, and R. M. Lennen, J. Phys. Chem. Ref. Data 2002, 31, 231. This paper gives the temperature dependence of pK_{a}.

d. Temperature and ionic strength dependence of pK_{a} for buffers: HEPES—D. Feng, W. F. Koch, and Y. C. Wu, Anal. Chem. 1989, 61, 1400; MOPSO—Y. C. Wu, P. A. Berezansky, D. Feng, and W. F. Koch, Anal. Chem. 1993, 65, 1084; ACES and CHES—R. N. Roy, J. Bice, J. Greer, J. A. Carlsten, J. Smithson, W. S. Good, C. P. Moore, L. N. Roy, and K. M. Kuhler, J. Chem. Eng.
Data 1997, 42, 41; TEMN, TEEN, DEPP, DESPEN, PIPES, PIPPS, PIPBS, MES, MOPS, and MOBS—A. Kandegedara and D. B. Rorabacher, Anal. Chem. 1999, 71, 3140. This last set of buffers was specifically developed for low metal-binding ability (Q. Yu, A. Kandegedara, Y. Xu, and D. B. Rorabacher, Anal. Biochem. 1997, 253, 50).

e. See marginal note on page 166 for the distinction between pK_{a} at μ = 0 and at μ = 0.1 M.

TABLE 8-2         (continued) Structures and pK_{a} values for common buffers^{a,b,c,d}
Name Structure

pK_{a}


μ  = 0    μ = 0.1 M

Formula

mass

\Delta (pK_{a})/\Delta T

(K^{-1})

N-2-Acetamido-2-aminoethane-

sulfonic acid (ACES)

H_{2}N\overset{\overset{O}{\parallel } }{C} CH_{2}\overset{+}{N}H_{2}CH_{2}CH_{2}SO_{3}^{- } 6.85 6.75 182.20 −0.018
3-(N-Morpholino)-2-hydroxy-

propanesulfonic acid (MOPSO)

6.90 225.26 −0.015
Imidazole hydrochloride 6.99 7.00 104.54 −0.022
PIPES (see above) 7.14 (pK_{2}) 6.93 302.37 −0.007
3-(N-Morpholino)propanesulfonic

acid (MOPS)

7.18 7.08 209.26 −0.012
Phosphoric acid H_{3}PO_{4} 7.20 (pK_{2}) 6.71 98.00 −0.002
4-(N-Morpholino)butanesulfonic

acid (MOBS)

7.48 223.29
N-Tris(hydroxymethyl)methyl-2-

aminoethanesulfonic acid (TES)

(HOCH_{2})_{3}C\overset{+}{N}H_{2}CH_{2}CH_{2}SO_{3}^{- } 7.55 7.60 229.25 −0.019
N-2-Hydroxyethylpiperazine-N′-2-

ethanesulfonic acid (HEPES)

7.56 7.49 238.30 −0.012
PIPPS (see above) —(pK_{2}) 7.97 330.42
N-2-Hydroxyethylpiperazine-N′-3-

propanesulfonic acid (HEPPS)

7.96 7.87 252.33 −0.013
Glycine amide hydrochloride H_{3}\overset{+}{N}CH_{2}\overset{\overset{O}{\parallel } }{C}NH_{2}\cdot Cl^{- } 8.04 110.54
Tris(hydroxymethyl)aminomethane

hydrochloride (TRIS HCl)

(HOCH_{2})_{3}C\overset{+}{N}H_{3}\cdot Cl^{- } 8.07 8.10 157.60 −0.028
TRICINE (see above) 8.14 (NH) 179.17 −0.018
Glycylglycine (see above) 8.26 (NH) 8.09 132.12 −0.026
BICINE (see above) 8.33 (NH) 8.22 163.17 −0.015
PIPBS (see above) —(pK_{2}) 8.55 358.47
DEPP 2HCl (see above) —(pK_{2}) 8.58 207.10
DESPEN (see above) —(pK_{2}) 9.06 360.49
BIS-TRIS propane·2HCl (see above) 9.10 (pK_{2}) 355.26
Ammonia NH_{4}^{+} 9.24 17.03 −0.031
Boric acid B(OH)_{3}^{+} 9.24 (pK_{1}) 8.98 61.83 −0.008
Cyclohexylaminoethanesulfonic

acid (CHES)

9.39 207.29 −0.023
TEEN·2HCl (see above) —(pK_{2}) 9.88 245.23
3-(Cyclohexylamino)propanesulfonic

acid (CAPS)

10.50 10.39 221.32 −0.028
N,N,N′,N′–Tetraethylmethylene-

diamine·2HCl (TEMN·2HCl)

Et_{2}\overset{+}{N}HCH_{2}H\overset{+}{N}Et_{2}\cdot 2Cl^{- } —(pK_{2}) 11.01 231.21
Phosphoric acid H_{3}PO_{4} 12.35 (pK_{3}) 11.52 98.00 −0.009
Boric acid B(OH)_{3}^{+} 12.74 (pK_{2}) 61.83
The "Step-by-Step Explanation" refers to a detailed and sequential breakdown of the solution or reasoning behind the answer. This comprehensive explanation walks through each step of the answer, offering you clarity and understanding.
Our explanations are based on the best information we have, but they may not always be right or fit every situation.
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
Already have an account?

Related Answered Questions

Question: 8.3

Verified Answer:

When ammonia is dissolved in water, its reaction i...
Question: 8.2

Verified Answer:

We assume that ammonium halide salts are completel...
Question: 8.E.A

Verified Answer:

pH = −\log \mathcal{A}_{H^{+}} . Bu...