Question 4.17: (a) Find the voltage distribution within the triangular elem...
(a) Find the voltage distribution within the triangular element if the voltages at the three nodes have the following values V_{1} = 8 @ (4, 0); V_{2} = 0 @ (0, 0); and V_{3} = 0 @ (4, 3).
(b) Determine the area of the triangle that is defined by the three nodes.

Learn more on how we answer questions.
(a) The voltage distribution within the element is computed from (4.80)
V^{(e)} (x,y) = [1 x y]\left[\begin{matrix} 1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2} \\ 1 & x_{3} & y_{3} \end{matrix} \right] ^{-1} \left[\begin{matrix} V_{1} \\ V_{2} \\ V_{3} \end{matrix} \right] (4.80)
V_{1,2,3}^{(e)} (x,y) = [1 x y] \left[\begin{matrix} 1 &4 &0 \\1& 0 & 0 \\ 1& 4 & 3\end{matrix} \right] ^{-1} \left[\begin{matrix}8 \\ 0 \\ 0 \end{matrix} \right]= [1 x y ]\left[\begin{matrix} 0 & 1 & 0 \\ 1/4& -1/4 & 0\\ -1/3& 0 &1/3\end{matrix} \right] \left[\begin{matrix}8 \\ 0 \\ 0 \end{matrix} \right] \\ = [1 x y ] \left[\begin{matrix} 0\\ 2 \\-8/3 \end{matrix} \right] = 2x -\frac{8}{3} y
The solution satisfies Laplace’s equation (4.76) and the boundary conditions (4.78).
∇^2V= 0 (4.76)
V^{(e) } (x_{j}, y_{j})= V_{j} ( j = 1,2,3) (4.78)
(b) The area of the triangle is determined from magnitude of the determinant of the square matrix given in (4.79).
\left[\begin{matrix} 1 & x_{1} & y_{1} \\ 1 & x_{2} & y_{2} \\ 1 & x_{3} & y_{3} \end{matrix} \right] ^{-1} \left[\begin{matrix} a \\ b \\ c \end{matrix} \right]= \left[\begin{matrix} V_{1} \\ V_{2} \\ V_{3} \end{matrix} \right] (4.79)
A_{e} = \frac{1}{2} \left|\begin{matrix} 1 &4 & 0 \\ 1 & 0&0\\ 1& 4 & 3\end{matrix} \right| = 6