Question 12.20: A food storage locker requires a refrigeration capacity of 5...

A food storage locker requires a refrigeration capacity of 50 kW. It works between a condenser temperature of 35°C and an evaporator temperature of – 10°C. The refrigerant is ammonia. It is sub-cooled by 5°C before entering the expansion valve by the dry saturated vapour leaving the evaporator. Assuming a single cylinder, single-acting compressor operating at 1000 r.p.m. with stroke equal to 1.2 times the bore.
Determine : (i) The power required, and
(ii) The cylinder dimensions.
Properties of ammonia are :

Saturation
temperature, °C
Pressure
bar
Enthalpy (kJ/kg) Entropy (kJ/kg K) Specific volume
(m³/kg)
Specific heat
(kJ/kg K)
Liquid Vapour Liquid Vapour Liquid Vapour Liquid Vapour
– 10
35
0.9157
13.522
154.056
366.072
1450.22
1488.57
0.82965
1.56605
5.7550
5.2086

1.7023
0.417477
0.095629

4.556
2.492
2.903

(UPSC)

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given : From the table above:
h_{2}    =    1450.22     kJ/kg ;     h_{3}  ^{ ′}    =    1488.57    kJ/kg ;    h_{f_4}    =    366.072    kJ/kg ;
h_{f_4}  ^{ ′}   =    h_{1}    =   h_{f_4}    – 4.556 (308 – 303)
= 366.07 – 4.556 (308 – 303) = 343.29 kJ/kg

Also                                                        s_{3}   =    s_{2}

or                                                            s_{3}   ^{′}    +    c_{p}   \ln  (\frac{T_{3}}{T_{3}   ^{′}})    =  5.755

5.2086 + 2.903  \ln  (\frac{T_{3}}{308})   =  5.755

or                                      \ln  (\frac{T_{3}}{308})   =  \frac{5.755   –    5.2086}{2.903}     = 0.1882

\frac{T_{3}}{308}   =   e^{0.1882}   = 371.8 K

Now,                                                  h_{3}   =    h_{3}   ^{′}    +       c_{p}    (T_{3}    –    T_{3}  ^{′})
= 1488.57 + 2.903 (371.8 – 308) = 1673.8 kJ/kg

Mass of refrigerant,                              \dot{m}  =  \frac{50}{ h_{2}   –    h_{1}}    =  \frac{50}{1450.22    –     343.29} 
= 0.04517 kJ/s

(i) Power required :
Power required                                  = \dot{m}   (h_{3}   –    h_{2})
= 0.04517 (1673.8 – 1450.22) = 10.1 kW.

(ii) Cylinder dimensions :

\dot{m}  =  \frac{π}{4}   D²   ×   L    ×   \frac{N}{60}    ×     0.417477   = 0.04517 (calculated above)

or                                                       \frac{π}{4}   D²   ×   1.2   D    ×   \frac{1000}{60}  ×     0.417477   =  0.04517

or                                                   D³  = \frac{ 0.04517  ×    4  ×    60}{π   ×    1.2   ×    1000   ×    0.417477 }    = 0.006888

∴        Diameter of cylinder,                     D = (0.006888)^{1/3}   = 0.19 m.

and,             Length of the cylinder,               L = 1.2D = 1.2 × 0.19 = 0.228 m.

1220

Related Answered Questions