Question 12.25: A food storage locker requires a refrigeration system of 240...
A food storage locker requires a refrigeration system of 2400 kJ/min. capacity at an evaporator temperature of 263 K and a condenser temperature of 303 K. The refrigerant used is freon-12 and is subcooled by 6°C before entering the expansion valve and vapour is superheated by 7°C before leaving the evaporator coil. The compression of refrigerant is reversible adiabatic. The refrigeration compressor is two-cylinder single-acting with stroke equal to 1.25 times the bore and operates at 1000 r.p.m.
Properties of freon-12
Saturation temp, K |
Absolute pressure, bar |
Specific volume of vapour, m³/kg |
Enthalpy, kJ/kg | Entropy, kJ/kg K | ||
Liquid | Vapour | Liquid | Vapour | |||
263 303 |
2.19 7.45 |
0.0767 0.0235 |
26.9 64.6 |
183.2 199.6 |
0.1080 0.2399 |
0.7020 0.6854 |
Take : Liquid specific heat = 1.235 kJ/kg K ; Vapour specific heat = 0.733 kJ/kg K.
Determine :
(i) Refrigerating effect per kg.
(ii) Mass of refrigerant to be circulated per minute.
(iii) Theoretical piston displacement per minute.
(iv) Theoretical power required to run the compressor, in kW.
(v) Heat removed through condenser per min.
(vi) Theoretical bore and stroke of compressor.
Learn more on how we answer questions.
The cycle of refrigeration is represented on T-s diagram on Fig. 35.
Enthalpy at ‘2’, h_{2} = h_{2} ^{′} + c_{p} (T_{2} – T_{2} ^{′})
From the given table :
h_{2} ^{′} = 183.2 kJ/kg
( T_{2} – T_{2} ^{′}) = Degree of superheat as the vapour enters the compressor = 7°C
∴ h_{2} = 183.2 + 0.733 × 7 = 188.33 kJ/kg
Also, entropy at ‘2’, s_{2} = s_{2} ^{′} + c_{p} log_{e} \frac{ T_{2} }{ T_{2} ^{′}}
= 0.7020 + 0.733 log_{e} (\frac{270}{263}) = 0.7212 kJ/kg K
For isentropic process 2-3
Entropy at ‘2’ = Entropy at ‘3’
0.7212 = s_{3} ^{′} + c_{p} log_{e} (\frac{ T_{3} }{ T_{3} ^{′}})
= 0.6854 + 0.733 log_{e} ( \frac{ T_{3} }{ 303})
∴ log_{e} (\frac{ T_{3} }{ 303}) = 0.0488
i.e., T_{3} = 318 K
Now, enthalpy at ‘3’, h_{3} = h_{3} ^{′} + c_{p} (T_{3} – T_{3} ^{′})
= 199.6 + 0.733 (318 – 303) = 210.6 kJ/kg.
Also, enthalpy at 4 ^{′}, h_{f_4} ^{′} = h_{f_4} – (c_{p})_{liquid} (T_{4} – T_{4} ^{′} ) = 64.6 – 1.235 × 6 = 57.19 kJ/kg
For the process 4 ^{′} -1,
Enthalpy at 4 ^{′} = enthalpy at 1 = 57.19 kJ/kg
For specific volume at 2,
∴ v_{2} = \frac{v_{2} ^{′} }{T_{2} ^{′} } × T_{2} = 0.0767 × \frac{270}{263} = 0.07874 m³/kg
(i) Refrigerating effect per kg
= h_{2} – h_{1} = 188.33 – 57.19 = 131.14 kJ/kg.
(ii) Mass of refrigerant to be circulated per minute for producing effect of 2400 kJ/min.
= \frac{2400}{131.14} = 18.3 kg/min.
(iii) Theoretical piston displacement per minute
= Mass flow/min. × specific volume at suction
= 18.3 × 0.07874 = 1.441 m³/min.
(iv) Theoretical power required to run the compressor
= Mass flow of refrigerant per sec. × compressor work/kg
= \frac{18.3}{60} × (h_{3} – h_{2}) = \frac{18.3}{60} (210.6 – 188.33 ) k J/s
= 6.79 kJ/s or 6.79 kW.
(v) Heat removed through the condenser per min.
= Mass flow of refrigerant × heat removed per kg of refrigerant
= 18.3 ( h_{3} – h_{f_4} ^{′} ) = 18.3 (210.6 – 57.19) = 2807.4 kJ/min.
(vi) Theoretical bore (d) and stroke (l) :
Theoretical piston displacement per cylinder
= \frac{Total displacement per minute }{Number of cylinder} = \frac{1.441}{2} = 0.7205 m³/min.
Also, length of stroke = 1.25 × diameter of piston
Hence, 0.7205 = π/4 d² × (1.25 d) × 1000
i.e., d = 0.09 m or 90 mm.
and l = 1.25 d = 1.25 × 90 = 112.5 mm.
