Question 4.11: A four-pole 50 Hz, three-phase induction motor has rotor res...

A four-pole 50 Hz, three-phase induction motor has rotor resistance of 0.5 Ω phase. The maximum torque occurs at a speed or 1470 rpm. Calculate the ratio of starting torque to maximum torque.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The synchronous speed,        N_{s} = \frac{120 f}{p}= \frac{120 ×50 }{4}= 1500 rpm

Rotor speed,                                    N_{r}=1200 rpm

Slip,                                          S=\frac{N_{s}-N_{r}}{N_{s}}= \frac{1500-1470}{1500}=0.02

At this slip, torque is maximum. Condition for maximum torque is   R_{2} = SX_{20}  .

Thus,        X_{20}=\frac{ R_{2} } { S}=\frac{0.5 } {0.02 } =25    Ω

For constant supply voltage, the expression for torque, T is given as

T=\frac{ K SR_{2}} { R_{2}^{2}+ S^{2} X_{20}^{2}} 

Value of maximimum torque   T_{m} is

T_{m}=\frac{ K} {2X_{20} }

At starting, S = 1, Starting torque   T_{st} is

T_{st}=\frac{K R_{2} } { R_{2}^{2}+X_{20}^{2}}

Substituting values,        \frac{ T_{st}} {T_{m} }= \frac{ K R_{2}} {R_{2}^{2} + X_{20}^{2} } × \frac{ 2X_{20}} { K}= \frac{ 2X_{20} R_{2}} {R_{2}^{2} + X_{20}^{2} }

\frac{T_{st} } {T_{m} }= \frac{2×25×0.5 } {(.5)^{2} +(25)^{2} }= 0.04

That is, the starting torque is only 4 per cent of the maximum torque.

Related Answered Questions