Question 12.19: A Freon-12 refrigerator producing a cooling effect of 20 kJ/...

A Freon-12 refrigerator producing a cooling effect of 20 kJ/s operates on a simple cycle with pressure limits of 1.509 bar and 9.607 bar. The vapour leaves the evaporator dry saturated and there is no undercooling. Determine the power required by the machine.
If the compressor operaters at 300 r.p.m. and has a clearance volume of 3% of stroke volume, determine the piston displacement of the compressor. For compressor assume that the expansion following the law pv^{1.13} = constant.
Given :

Temperature
°C
p_{s}
bar
v_{g}
m³/kg
Enthalpy
h_{f}
kJ/kg
h_{g}
Entropy
s_{f}
kJ/kg K
s_{g}
Specific
heat
kJ/kg K
– 20
40
1.509
9.607
0.1088
17.8
74.53
178.61
203.05
0.073
0.2716
0.7082
0.682

0.747

(UPSC)

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given : From the table above :
h_{2}  =   178.61    kJ/kg ;    h_{3}  ^{′}   =    203.05     kJ/kg ;    h_{f_4}   =    74.53    kJ/kg    =    h_{1}

Now, cooling effect                  = \dot{m}   (h_{2}   –    h_{1})
20 = \dot{m}   (178.61 – 74.53)

∴                                              \dot{m}   =  \frac{20}{(178.61   –    74.53)}   =  0.192 kg/s

Also,                                                         s_{3}   =    s_{2}

s_{3}   ^{′}    +    c_{p}   \ln  (\frac{T_{3}}{T_{3}   ^{′}})     =   0.7082

0.682 + 0.747    \ln  (\frac{T_{3}}{313})   =  0.7082

or                                      \ln  (\frac{T_{3}}{313})   =  \frac{0.7082   –    0.682}{ 0.747 }      =  0.03507

or                                      \frac{T_{3}}{313}   =   e^{0.03507}      =   1.0357

∴                                          T_{3}  = 313 × 1.0357 = 324.2 K
Now,                                    h_{3}    =    h_{3}   ^{′}   +    c_{p} (324.2 – 303)
= 203.05 + 0.747 (324.2 – 313) = 211.4 kJ/kg

Power required :
Power required by the machine = \dot{m}   (h_{3}   –    h_{2})
= 0.192 (211.4 – 178.61) = 6.29 kW.

Piston displacement, V :

Volumetric efficiency,                                                η_{vol.}   =    1   +    C   –   C   (\frac{p_{d}}{p_{s}})^{1/n}

= 1 + 0.03 – 0.03  (\frac{9.607}{1.509})^{\frac{1}{1.13}}   = 0.876    or   87.6%

The volume of refrigerant at the intake conditions is

\dot{m}  ×    v_{g}   = 0.192 × 0.1088 = 0.02089 m³/s

Hence the swept volume                                 = \frac{0.02089}{η_{vol.}}   =  \frac{0.02089}{0.876}  =  0.02385 m³/s

∴                                                              V  =  \frac{0.02385  ×    60}{300}   = 0.00477 m³.

1219

Related Answered Questions