Question 5.15: A gable frame is subjected to a snow loading, as shown in Fi...

A gable frame is subjected to a snow loading, as shown in Fig. 5.23(a). Draw the shear, bending moment, and axial force diagrams and the qualitative deflected shape for the frame.

5.23a
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Static Determinacy m = 4, j = 5, r = 4, and ece_c = 1. Because 3m+r=3j+ec3m + r = 3j + e_c and the frame is geometrically stable, it is statically determinate.

Reactions (See Fig. 5.23(b).)

+ME=0+\circlearrowleft \sum{M_E}=0

 

AY(8)+12(8)(4)=0-A_Y (8) + 12(8)(4) = 0              AY=48kNA_Y = 48 kN \uparrow

 

+FY=0+\uparrow \sum{F_Y}=0

 

4812(8)+EY=048 – 12(8) + E_Y = 0                 EY=48kNE_Y = 48 kN \uparrow

 

+MCAC=0+\circlearrowleft \sum{M^{AC}_C}=0

 

AX(8)48(4)+12(4)(2)=0A_X (8) – 48(4) + 12(4)(2) = 0                   AX=12kNA_X = 12 kN \longrightarrow

 

+FX=0+\longrightarrow \sum{F_X}=0

 

12+EX=012 + E_X = 0

 

EX=12kNE_X = -12 kN               EX=12kNE_X = 12 kN\longleftarrow

Member End Forces (See Fig. 5.23(c).)

Joint A By applying the equations of equilibrium FX=0\sum{F_X}=0 and FY=0\sum{F_Y}=0, we obtain

AXAB=12kNA^{AB}_X = 12 kN                AYAB=48kNA^{AB}_Y = 48 kN

Member AB Considering the equilibrium of member AB, we obtain

BXAB=12kNB^{AB}_X = -12 kN              BYAB=48kNB^{AB}_Y = -48 kN                 MBAB=60kNmM^{AB}_B = -60 kN-m

Joint B Applying the three equilibrium equations, we obtain

BXBC=12kNB^{BC}_X = 12 kN              BYBC=48kNB^{BC}_Y = 48 kN                 MBBC=60kNmM^{BC}_B = 60 kN-m

Member BC

+FX=0+\longrightarrow \sum{F_X}=0                          CXBC=12kNC^{BC}_X = -12 kN

 

+FY=0+\uparrow \sum{F_Y}=0

 

4812(4)+CYBC=048 – 12(4) + C^{BC}_Y =0                 CYBC=0C^{BC}_Y = 0

 

+MB=0+\circlearrowleft \sum{M_B}=0

 

6012(4)(2)+12(3)=060 – 12(4)(2) + 12(3) = 0                                       Checks

Joint C Considering the equilibrium of joint C, we determine

CXCD=12kNC^{CD}_X =12 kN                CYCD=0C^{CD}_Y = 0

Member CD

+FX=0+\longrightarrow \sum{F_X}=0                       DXCD=12kND^{CD}_X = -12 kN

 

+FY=0+\uparrow \sum{F_Y}=0

 

12(4)+DYCD=0-12(4) + D^{CD}_Y =0                   DYCD=48kND^{CD}_Y = 48 kN

 

+MD=0+\circlearrowleft \sum{M_D} = 0

 

12(3)+12(4)(2)+MDCD=0-12(3) + 12(4)(2) + M^{CD}_D = 0                   MDCD=60kNmM^{CD}_D =-60 kN-m

Joint D Applying the three equilibrium equations, we obtain

DXDE=12kND^{DE}_X = 12 kN              DYDE=48kND^{DE}_Y =-48 kN                    MDDE=60kNmM^{DE}_D = 60 kN-m

Member DE

+FX=0+\longrightarrow \sum{F_X}=0                 EXDE=12kNE^{DE}_X = -12 kN

 

+FY=0+\uparrow \sum{F_Y}=0                          EYDE=48kNE^{DE}_Y = 48 kN

 

+ME=0+\circlearrowleft \sum{M_E} = 0

60 – 12(5) = 0                                         Checks

Joint E

+FX=0+\longrightarrow \sum{F_X}=0                  -12 + 12 = 0                        Checks

+FY=0+\uparrow \sum{F_Y}=0                      48 – 48 = 0                        Checks

Distributed Loads on Inclined Members BC and CD As the 12-kN/m snow loading is specified per horizontal meter, it is necessary to resolve it into components parallel and perpendicular to the directions of members BC and CD. Consider, for example, member BC, as shown in Fig. 5.23(d). The total vertical load acting on this member is (12 kN/m)(4 m) = 48 kN. Dividing this total vertical load by the length of the member, we obtain the intensity of the vertical distributed load per meter along the inclined length of the member as 48/5 = 9.6 kN/m. The components of this vertical distributed load in the directions parallel and perpendicular to the axis of the member are (3/5)(9.6) = 5.76 kN/m and (4/5)(9.6) = 7.68 kN/m, respectively, as shown in Fig. 5.23(d). The distributed loading for member CD is computed similarly and is shown in Fig. 5.23(e).

Shear and Bending Moment Diagrams See Fig. 5.23(f ) and (g).

Axial Force Diagrams The equations for axial force in the members of the frame are:

Member AB           Q = -48

Member BC           Q = -38.4 + 5.76x

Member CD           Q = -9.6 – 5.76x

Member DE           Q = -48

The axial force diagrams are shown in Fig. 5.23(h).

Qualitative Deflected Shape See Fig. 5.23(i).

5.23b
5.23c
5.23d
5.23e
5.23f
5.23h
5.23i

Related Answered Questions

Question: 5.7

Verified Answer:

Reactions (See Fig. 5.11(b).) +\longrightar...
Question: 5.6

Verified Answer:

Reactions (See Fig. 5.10(b).) +\longrightar...
Question: 5.1

Verified Answer:

Reactions Considering the equilibrium of the free ...
Question: 5.3

Verified Answer:

Reactions See Fig. 5.5(b). +\longrightarrow...
Question: 5.4

Verified Answer:

Reactions See Fig. 5.6(b). +\longrightarrow...
Question: 5.5

Verified Answer:

Reactions (See Fig. 5.9(b).) +\longrightarr...
Question: 5.8

Verified Answer:

Reactions (See Fig. 5.12(b).) +\longrightar...
Question: 5.9

Verified Answer:

Reactions (See Fig. 5.13(b).) +\circlearrow...