Question 3.4: A gas in its ideal-gas state undergoes the following sequenc...

A gas in its ideal-gas state undergoes the following sequence of mechanically reversible
processes in a closed system:

(a) From an initial state of 70°C and 1 bar, it is compressed adiabatically to 150°C.

(b) It is then cooled from 150 to 70°C at constant pressure.

(c) Finally, it expands isothermally to its original state.

Calculate W, Q, ΔUigW,  Q,  ΔU^{ig}, and ΔHigΔH^{ig} for each of the three processes and for the entire cycle.
Take CVig=12.471 and CPig=20.785 Jmol1K1.C^{ig}_{V}=12.471  and  C^{ig}_{P} = 20.785  J· mol^{−1}· K^{−1}.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Take as a basis 1 mol of gas.

(a) For adiabatic compression, Q = 0, and

ΔUig=W=CVig ΔT= ​​(12.471)(150 − 70)=998 JΔ U^{ig}  = W = C^{ig}_{V}  ΔT = ​​( 12.471 ) ( 150  −  70 )  = 998  J

ΔHig=CPig ΔT= ​​(20.785)(150 − 70)=1663 JΔ H^{ig}  = C^{ig}_{P}  ΔT = ​​( 20.785 ) ( 150 − 70 )  = 1663  J

Pressure P2P_{2} is found from Eq. (3.23b):

TP(1γ)/γ=constTP^{(1 -\gamma )/\gamma } = const       (3.23b)

P2=P1(T2T1)γ(γ– 1)=(1)(150+273.1370+273.15)2.5=1.689 barP_{2} = P_{1} \left(\frac{T_{2} }{T_{1}}\right) ^{\gamma (\gamma –  1)} = (1)\left(\frac{150 + 273.13}{70 + 273.15} \right) ^{2.5} = 1.689  bar

(b) For this constant-pressure process,

 Q=ΔHig= ​ ​CPigΔT= ​​(20.785)(70 − 150)= −1663 JQ = Δ H^{ig}  = ​ ​C _{P}^{ig} ΔT = ​​( 20.785 ) ( 70  −  150 )  = −1663  J

 ΔU= ​CVigΔT= ​​(12.471)(70 − 150)= −998 JΔU = ​C _{V}^{ig} ΔT = ​​( 12.471 ) ( 70 − 150 )  = −998  J

 W=ΔUig− Q= −998 − ​​(1663)=665 JW = Δ U^{ig} −  Q = −998  − ​​ ( −1663 )  = 665  J

(c) For this isothermal process,ΔUig and  ΔHigΔU^{ig}  and   ΔH^{ig} are zero; Eq. (3.20) yields:

ϱ=W RT InV2igV1ig=RT In P1P2        (constT)\varrho = – W  RT   In \frac{V^{ig}_{2} }{V^{ig}_{1} } = RT   In  \frac{P_{1} }{P_{2}}         ( const T )      (3.20)

ϱ=W=RT InP3P1=RT In P2P1=(8.314)(343.15)ln1.6891=1495 J\varrho = -W = RT  In \frac{P_{3}}{P_{1}} = RT  In  \frac{P_{2}}{P_{1}} = ( 8.314 )( 343.15 ) ln\frac{1.689}{1} = 1495  J

For the entire cycle,

Q = 0 − 1663 + 1495 = −168 J

W = 998 + 665 − 1495 = 168 J

ΔUig=998 − 998+0=0Δ U^{ig} = 998  −  998 + 0 = 0

ΔHig=1663 − 1663+0=0Δ H^{ig} = 1663  −  1663 + 0 = 0

The property changes ΔUig and ΔHig ΔU^{ig}  and  ΔH^{ig} both are zero for the entire cycle because the initial and final states are identical. Note also that Q = −W for the cycle. This follows from the first law with ΔUig=0 ΔU^{ig} = 0.

التقاط

Related Answered Questions

Question: 3.14

Verified Answer:

(a) Apply the Rackett equation at the reduced temp...