Question 13.6: A homogeneous circular disk (mass M, radius R) rotates with ...

A homogeneous circular disk (mass M, radius R) rotates with constant angular velocity ω about a body-fixed axis passing through the center. The axis is inclined by the angle α from the surface normal and is pivoted at both sides of the disk center with spacing d. Determine the forces acting on the pivots.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The Euler equations read

I1 ω˙1ω2ω3(I2I3)=D1,I_{1}  \dot{ω}_{1} − ω_{2}ω_{3}(I_{2} − I_{3}) = D_{1},                                        (13.13)

 

I2ω˙2ω1ω3(I3I1)=D2,I_{2} \dot{ω}_{2} − ω_{1}ω_{3}(I_{3} − I_{1}) = D_{2},                                      (13.14)

 

I3 ω˙3ω1ω2(I1I2)=D3,I_{3}  \dot{ω}_{3} − ω_{1}ω_{2}(I_{1} − I_{2}) = D_{3},                                      (13.15)

where D={D1,D2,D3}D = \left\{D_{1},D_{2},D_{3}\right\} represents the torque in the body-fixed system. We choose the body-fixed coordinate system in such a way that n=e3 and e1n = e_{3}   and   e_{1} lies in the plane spanned by n,ω. For the principal momentum of inertia I1I_{1}, we have

I1=σ02π0Ry2rdrdφ=σ 02π0Rr3 sin2 φ drdφ=14σR4 02πsin2 φ dφI_{1} = σ \int\limits_{0}^{2π}{\int\limits_{0}^{R}{y^{2}r drd\varphi}} = σ  \int\limits_{0}^{2π}{\int\limits_{0}^{R}{ r^{3}  sin^{2}  \varphi  drd\varphi}}= \frac{1}{4} σR^{4}  \int\limits_{0}^{2π}{sin^{2}  \varphi  d\varphi}

 

=14σR4π=14(MπR2)R4π=14MR2,= \frac{1}{4} σR^{4}π = \frac{1}{4} \left(\frac{M}{πR^{2}}\right) R^{4}π = \frac{1}{4} MR^{2},                            (13.16)

since the surface density σ is given by σ=M/F=M/πR2.σ = M/F = M/πR^{2}. And likewise for I2 and I3I_{2}   and   I_{3}

I1=I2=12I3=14MR2.I_{1} = I_{2} = \frac{1}{2} I_{3} = \frac{1}{4} MR^{2}.                                            (13.17)

The components of the angular velocity vector are given by

ω={ω1=ωsin α,ω2=0,ω3=ω cos α}.ω = \{ω_{1} = ω sin  α,ω_{2} = 0,ω_{3} = ω  cos  α\}.                                         (13.18)

Because ω˙=0\dot{ω} = 0, inserting (13.17) and (13.18) into (13.13) to (13.15) yields

D1=D3=0    and    D2=ω2 sin α  cos α14MR2.D_{1} = D_{3} = 0         and         D_{2} =−ω^{2}  sin  α   cos  α \frac{1}{4} MR^{2}.                                        (13.19)

Because D=r×FD = r×F, in the pivots act equal but oppositely directed forces of magnitude

F=D22d=MR2ω214d(14sin 2α)=MR2ω2 sin 2α16d|F| =\frac{|D_{2}|}{2d}=MR^{2}ω^{2} \frac{1}{4d} \left(\frac{1}{4} sin   2α\right) =MR^{2}ω^{2}   \frac{sin  2α}{16d}                                      (13.20)

(see Fig. 13.13).

13.13

Related Answered Questions

Question: 13.4

Verified Answer:

The principal moments of inertia of the rectangle ...