Question 11.12: A homogeneous thin body of mass M, shown in Fig. 11.8, is su...

A homogeneous thin body of mass M, shown in Fig. 11.8, is suspended in the vertical plane by a thin wire of mass  m \ll M,  length a, and with its ends hinged in smooth bearings. (i) Derive the equations for small  vibrations of the body about its vertical equilibrium position  \phi=\theta=0.  Identify the inertia and stiffness matrices. (ii) Sketch the general formulation of the solution. Then let  a=l,,  and suppose that the body is a thin  circular disk of radius   R=\sqrt{2} l.  Determine the normal mode frequencies  P_m,  the ratios of the amplitudese  C_{l m},  and thus derive the solution of the coupled equations of motion . Identify the normal equations of motion and their normal mode solutions as functions of  the generalized variables.

11.8
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Solution of (i). The system is scleronomic with two degrees of freedom  \theta  and  \phi  defined in Fig. 11.8. Since the wire has negligible mass  compared with M, its contribution to the total kinetic and potential energies is negligible. The total velocity of the center of mass referred to the body frame \psi=\left\{G ; \mathbf{e}_r, \mathbf{e}_\phi\right\}  is given by  \mathbf{v}^*=\mathbf{v}_H  +  \omega \times  \mathbf{l}=a \dot{\theta} \mathbf{t}  +  l \dot{\phi} \mathbf{e}_\phi, where t = \sin(\phi – \theta)e_r   +   \cos(\phi  –  \theta)e_q,  The total kinetic energy of the system, by (10.101), is

K(\mathscr{B}, t)=\frac{1}{2} m \mathbf{v}^* \cdot \mathbf{v}^*  +  \frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{I}_C \boldsymbol{\omega}                          (10.101)

T=\frac{1}{2} M\left[a^2 \dot{\theta}^2 \sin ^2(\phi  –  \theta)  +  (a \dot{\theta} \cos (\phi  –  \theta)  +  l \dot{\phi})^2\right]  +  \frac{1}{2} I_G \dot{\phi}^2,             (11.92a)

and the total gravitational potential energy is given by

V=M g[a(1  –  \cos \theta)  +  l(1  –  \cos \phi)].                         (11.92b)

We note that no coordinates are absent. For small vibrations, only  terms of second order in all of the small quantities  \phi, \dot{\phi}, \theta, \dot{\theta}  are retained in (11.92a) and (11.92b). Therefore , the first term in (11.92a) is of higher order and may be neglected ; and with   \cos (\phi  –  \theta) \cong 1  –  (\phi  –  \theta)^2 / 2,   to terms of second order the total kinetic and potential energies of the system for small vibrations about the  vertical equilibrium configuration are thus given by

\begin{aligned}T &=\frac{1}{2}\left(I_G  +  M l^2\right) \dot{\phi}^2  +  \frac{1}{2} M\left(2 l a \dot{\phi} \dot{\theta}  +  a^2 \dot{\theta}^2\right), \\V &=\frac{1}{2} M g\left(l \phi^2  +  a \theta^2\right)\end{aligned}.               (11.92c)

The potential energy is a positive definite, homogeneous quadratic  function of the generalized coordinates  \theta  and  \phi.  Hence, clearly, the equilibrium configuration \phi=\theta=0  is infinitesimally stable.  Similarly, the total kinetic energy is a homogeneous quadratic function of the generalized velocities  \dot{\theta}  and  \dot{\phi}  With   I_H=I_G  +  M l^2  in accordance with the parallel axis theorem in (11.92c), the symmetric inertia and stiffness matrices in (11.84) and (11.83) are thus  identified as

T\left(\dot{q}_r\right)=\frac{1}{2} M_{k l} \dot{q}_k \dot{q}_l                (11.84)

V\left(q_r\right)=\frac{1}{2} K_{k l} q_k q_l                       (11.83)

\left[M_{k l}\right]=\left[\begin{array}{ll}I_H & M l a \\M l a & M a^2\end{array}\right], \quad\left[K_{k l}\right]=\left[\begin{array}{ll}M g l & 0 \\0 & M g a\end{array}\right] .                          (11.92d)

We note in passing that the stiffness matrix is diagonal and all of its nontrivial components are positive; so, it is quite evident that   K u \cdot u>0  holds for all  u \neq 0.

The hinge constraints are workless, so the system is conservative  with a Lagrangian function

L=\frac{1}{2} I_H \dot{\phi}^2  +  \frac{1}{2} M\left(2 l a \dot{\phi} \dot{\theta}  +  a^2 \dot{\theta}^2\right)  –  \frac{1}{2} M g\left(l \phi^2  +  a \theta^2\right),                             (11.92e)

and Lagrange’s equations (11.66) now yield the equations of small  vibration,

\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_r}\right)  –  \frac{\partial L}{\partial q_r}=0, \quad r=1,2, \ldots, n                     (11.66)

\begin{gathered}I_H \ddot{\phi}  +  M a l \ddot{\theta}  +  M g l \phi=0, \\M l a \ddot{\phi}  +  M a^2 \ddot{\theta}  +  M g a \theta=0\end{gathered}.                               (11.92f)

Solution of (ii). The natural frequencies for the small vibrations are determined by (11.89). With (11.92d), we have

\operatorname{det}\left|K_{k l}  –  p^2 M_{k l}\right|=0                   (11.89)

\operatorname{det}\left[\begin{array}{ll}M g l  –  p^2 I_H & -p^2 M l a \\-p^2 M l a & M g a  –  p^2 M a^2\end{array}\right]=0.

This reduces to a quadratic equation in p²:

\left(M g l  –  p^2 I_H\right)\left(M g a  –  p^2 M a^2\right)  –  p^4 M^2 l^2 a^2=0,                    (11.92g)

which yield s two eigenfrequencies   p_m .  Use of these in (11.90)  provides two sets of equations for the ratios of the coefficients  C_{l m}, m=1,2;  namely,

\left(K_{k l}-p_m^2 M_{k l}\right) C_{l m}=0                       (11.90)

\left[\begin{array}{ll}M g l  –  p_m^2 I_H & -p_m^2 M l a \\-p_m^2 M l a & M g a  –  p_m^2 M a^2\end{array}\right]\left[\begin{array}{l}C_{1 m} \\C_{2 m}\end{array}\right]=0.                    (11.92h)

Finally, use of these results in (11.91) yield s the solutions for  q_1=\phi \text { and } q_2=\theta.  We omit these general detail s and tum to a special case for illustration.

q_k=\sum_{m=1}^n C_{k m} \sin \left(p_m t  +  \phi_m\right), \quad k=1,2, \ldots, n                    (11.91)

Consider a circular disk of radius  R=\sqrt{2} l  and let  a=l \text {. }  Then   I_G=M R^2 / 2=M l^2,  and  I_H=2 M l^2.  The characteristic equation (11.92g) thus simplifies to  p^4  –  3 p_0^2 p^2  +  p_0^4=0  with positive roots

p_1=p_0 \sqrt{\frac{1}{2}(3  +  \sqrt{5})}, \quad p_2=p_0 \sqrt{\frac{1}{2}(3  –  \sqrt{5})} \text {, }                  (11.92i)

where   p_0 \equiv \sqrt{g / l},  and ( 11.92h) becomes

\left[\begin{array}{ll}p_0^2  –  2 p_m^2 & -p_m^2 \\-p_m^2 & p_0^2  –  p_m^2\end{array}\right]\left[\begin{array}{l}C_{1 m} \\C_{2 m}\end{array}\right]=0 .           (11.92j)

For m = 1, 2 (no sum), we thus obtain the amplitude ratios

\frac{C_{21}}{C_{11}}=\frac{\left(p_0^2 –  2 p_1^2\right)}{p_1^2}, \quad \frac{C_{12}}{C_{22}}=\frac{p_2^2}{\left(p_0^2  –  2 p_2^2\right)}.                (11.92k)

Substitution here of the characteristic roots (11.92i) yields

C_{21}=-\frac{1}{2}(1  +  \sqrt{5}) C_{11}, \quad C_{12}=\frac{1}{2}(1  +  \sqrt{5}) C_{22} .                  (11.92l)

Introducing these in (11.91) in which  q_1=\phi  and  q_2=\theta,  we obtain  the general solution

\begin{aligned}\phi &=C_{11} \sin \left(p_1 t  +  \phi_1\right)  +  \frac{1}{2}(1  +  \sqrt{5}) C_{22} \sin \left(p_2 t  +  \phi_2\right), \\\theta &=-\frac{1}{2}(1  +  \sqrt{5}) C_{11} \sin \left(p_1 t  +  \phi_1\right)  +  C_{22} \sin \left(p_2 t  +  \phi_2\right)\end{aligned}.                (11.92m)

The remaining constants  C_{11}, C_{22}, {\phi}_1,   and  \phi_2  are determined upon  specification of the initial data.

The normal mode motions, readily identified from (11.92m), are  defined by

\xi_1=C_{11} \sin \left(p_1 t  +  \phi_1\right), \quad \xi_2=C_{22} \sin \left(p_2 t  +  \phi_2\right),              (11.92n)

and upon solving (11.92m) for the  \xi_k \mathrm{~s},  we obtain the normal  coordinates in terms of the original generalized coordinates:

\begin{aligned}&\xi_1=-\frac{1}{10} \sqrt{5}(2 \theta  +  \phi(1  –  \sqrt{5})), \\&\xi_2=-\frac{1}{20}(\sqrt{5}  –  5)(2 \theta  +  \phi(1  +  \sqrt{5}))\end{aligned}.             (11.92o)

These normal coordinates uncouple the original equations of motion (11.92f) applied to the circular disk so that the normal mode equations of motion are

\ddot{\xi}_k  +  p_k^2 \xi_k=0, \quad k=1,2(\text { no sum }),                  (11.92p)

in which the normal mode frequencies  p_k  are given in (11.92i).

Related Answered Questions

Question: 11.4

Verified Answer:

The kinetic energy of P is   T=\frac{1}{2} ...
Question: 11.1

Verified Answer:

The three independent generalized coordinates and ...