Question 10.35: (a) Let p > 0. Prove that F(z) = ∫z^∞ e^-t/t^p dt = e^-z ...

(a) Let p>0. Prove that

\begin{aligned} F(z)=\int\limits_{z}^{\infty} \frac{e^{-t}}{t^{p}} d t&=e^{-z}\left\{\frac{1}{z^{p}}-\frac{p}{z^{p+1}}+\frac{p(p+1)}{z^{p+2}}-\cdots(-1)^{n} \frac{p(p+1) \cdots(p+n-1)}{z^{p+n}}\right\} \\ & +(-1)^{n+1} p(p+1) \cdots(p+n) \int\limits_{z}^{\infty} \frac{e^{-t}}{t^{p+n+1}} d t \end{aligned}

(b) Use (a) to prove that

F(z)=\int\limits_{z}^{\infty} \frac{e^{-t}}{t^{p}} d t \sim e^{-z}\left\{\frac{1}{z^{p}}-\frac{p}{z^{p+1}}+\frac{p(p+1)}{z^{p+2}}-\cdots\right\}=S(z)

that is, the series on the right is an asymptotic expansion of the function on the left.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Integrating by parts, we have

\begin{aligned} I_{p}=\int\limits_{z}^{\infty} \frac{e^{-t}}{t^{p}} d t & =\underset{M \rightarrow \infty}{\lim} \int\limits_{z}^{M} e^{-t} t^{-p} d t=\lim _{M \rightarrow \infty}\left\{\left.\left(-e^{-t}\right)\left(t^{-p}\right)\right|_{z} ^{M}-\int\limits_{z}^{M}\left(-e^{-t}\right)\left(-p t^{-p-1}\right) d t\right\} \\ & =\underset{M \rightarrow \infty}{\lim}\left\{\frac{e^{-z}}{z^{p}}-\frac{e^{-M}}{M^{p}}-p \int\limits_{z}^{M} \frac{e^{-t}}{t^{p+1}} d t\right\}=\frac{e^{-z}}{z^{p}}-p \int\limits_{z}^{\infty} \frac{e^{-t}}{t^{p+1}} d t=\frac{e^{-z}}{z^{p}}-p I_{p+1} \end{aligned}

Similarly, I_{p+1}=\left(e^{-z} / z^{p+1}\right)-(p+1) I_{p+2} so that

I_{p}=\frac{e^{-z}}{z^{p}}-p\left\{\frac{e^{-z}}{z^{p+1}}-(p+1) I_{p+2}\right\}=\frac{e^{-z}}{z^{p}}-\frac{p e^{-z}}{z^{p+1}}+p(p+1) I_{p+2}

By continuing in this manner, the result follows.

(b) Let

S_{n}(z)=e^{-z}\left\{\frac{1}{z^{p}}-\frac{p}{z^{p+1}}+\frac{p(p+1)}{z^{p+2}}-\cdots(-1)^{n} \frac{p(p+1) \cdots(p+n-1)}{z^{p+n}}\right\}

Then

R_{n}(z)=F(z)-S_{n}(z)=(-1)^{n+1} p(p+1) \cdots(p+n) \int\limits_{z}^{\infty} \frac{e^{-t}}{t^{p+n+1}} d t

Now, for real z>0,

\begin{aligned}\left|R_{n}(z)\right|=p(p+1) \cdots(p+n) \int\limits_{z}^{\infty} \frac{e^{-t}}{t^{p+n+1}} d t & \leq p(p+1) \cdots(p+n) \int\limits_{z}^{\infty} \frac{e^{-t}}{z^{p+n+1}} d t \\& \leq \frac{p(p+1) \cdots(p+n)}{z^{p+n+1}}\end{aligned}

since

\int\limits_{z}^{\infty} e^{-t} d t \leq \int\limits_{0}^{\infty} e^{-t} d t=1

Thus

\underset{z \rightarrow \infty}{\lim}\left|z^{n} R_{n}(z)\right| \leq \underset{z \rightarrow \infty}{\lim} \frac{p(p+1) \cdots(p+n)}{z^{p}}=0

and it follows that \lim _{z \rightarrow \infty} z^{n} R_{n}(z)=0. Hence, the required result is proved for real z>0. The result can also be extended to complex values of z.

Note that since

\left|\frac{u_{n+1}}{u_{n}}\right|=\left|\frac{p(p+1) \cdots(p+n) / z^{p+n+1}}{p(p+1) \cdots(p+n-1) / z^{p+n}}\right|=\frac{p+n}{|z|}

where u_{n} is the nth term of the series, we have for all fixed z

\underset{n \rightarrow \infty}{\lim}\left|\frac{u_{n+1}}{u_{n}}\right|=\infty

and the series diverges for all z by the ratio test.

Related Answered Questions

Question: 10.10

Verified Answer:

From Problem 7.35, page 233, we have \beg...
Question: 10.47

Verified Answer:

By Problem 6.33, we have J_{n}(z)=\frac{1}{...
Question: 10.46

Verified Answer:

We have P=\Gamma\left(\frac{1}{m}\right) \G...
Question: 10.45

Verified Answer:

The Legendre polynomials P_{n}(z) a...
Question: 10.43

Verified Answer:

Using Problems 10.39, 10.42, 10.170, and the addit...
Question: 10.41

Verified Answer:

(a) We have K^{\prime}=\int_{0}^{1} \frac{d...
Question: 10.40

Verified Answer:

From Problem 10.39 (a) \operatorname{sn}(z+...
Question: 10.39

Verified Answer:

We have z=\int_{0}^{\phi} \frac{d \theta}{\...
Question: 10.36

Verified Answer:

We have \Gamma(z+1)=\int_{0}^{\infty} \tau^...
Question: 10.33

Verified Answer:

Since F(a, b ; c ; z)=1+\frac{a \cdot b}{1 ...