Question 10.35: (a) Let p > 0. Prove that F(z) = ∫z^∞ e^-t/t^p dt = e^-z ...
(a) Let p>0. Prove that
\begin{aligned} F(z)=\int\limits_{z}^{\infty} \frac{e^{-t}}{t^{p}} d t&=e^{-z}\left\{\frac{1}{z^{p}}-\frac{p}{z^{p+1}}+\frac{p(p+1)}{z^{p+2}}-\cdots(-1)^{n} \frac{p(p+1) \cdots(p+n-1)}{z^{p+n}}\right\} \\ & +(-1)^{n+1} p(p+1) \cdots(p+n) \int\limits_{z}^{\infty} \frac{e^{-t}}{t^{p+n+1}} d t \end{aligned}
(b) Use (a) to prove that
F(z)=\int\limits_{z}^{\infty} \frac{e^{-t}}{t^{p}} d t \sim e^{-z}\left\{\frac{1}{z^{p}}-\frac{p}{z^{p+1}}+\frac{p(p+1)}{z^{p+2}}-\cdots\right\}=S(z)
that is, the series on the right is an asymptotic expansion of the function on the left.
Learn more on how we answer questions.
(a) Integrating by parts, we have
\begin{aligned} I_{p}=\int\limits_{z}^{\infty} \frac{e^{-t}}{t^{p}} d t & =\underset{M \rightarrow \infty}{\lim} \int\limits_{z}^{M} e^{-t} t^{-p} d t=\lim _{M \rightarrow \infty}\left\{\left.\left(-e^{-t}\right)\left(t^{-p}\right)\right|_{z} ^{M}-\int\limits_{z}^{M}\left(-e^{-t}\right)\left(-p t^{-p-1}\right) d t\right\} \\ & =\underset{M \rightarrow \infty}{\lim}\left\{\frac{e^{-z}}{z^{p}}-\frac{e^{-M}}{M^{p}}-p \int\limits_{z}^{M} \frac{e^{-t}}{t^{p+1}} d t\right\}=\frac{e^{-z}}{z^{p}}-p \int\limits_{z}^{\infty} \frac{e^{-t}}{t^{p+1}} d t=\frac{e^{-z}}{z^{p}}-p I_{p+1} \end{aligned}
Similarly, I_{p+1}=\left(e^{-z} / z^{p+1}\right)-(p+1) I_{p+2} so that
I_{p}=\frac{e^{-z}}{z^{p}}-p\left\{\frac{e^{-z}}{z^{p+1}}-(p+1) I_{p+2}\right\}=\frac{e^{-z}}{z^{p}}-\frac{p e^{-z}}{z^{p+1}}+p(p+1) I_{p+2}
By continuing in this manner, the result follows.
(b) Let
S_{n}(z)=e^{-z}\left\{\frac{1}{z^{p}}-\frac{p}{z^{p+1}}+\frac{p(p+1)}{z^{p+2}}-\cdots(-1)^{n} \frac{p(p+1) \cdots(p+n-1)}{z^{p+n}}\right\}
Then
R_{n}(z)=F(z)-S_{n}(z)=(-1)^{n+1} p(p+1) \cdots(p+n) \int\limits_{z}^{\infty} \frac{e^{-t}}{t^{p+n+1}} d t
Now, for real z>0,
\begin{aligned}\left|R_{n}(z)\right|=p(p+1) \cdots(p+n) \int\limits_{z}^{\infty} \frac{e^{-t}}{t^{p+n+1}} d t & \leq p(p+1) \cdots(p+n) \int\limits_{z}^{\infty} \frac{e^{-t}}{z^{p+n+1}} d t \\& \leq \frac{p(p+1) \cdots(p+n)}{z^{p+n+1}}\end{aligned}
since
\int\limits_{z}^{\infty} e^{-t} d t \leq \int\limits_{0}^{\infty} e^{-t} d t=1
Thus
\underset{z \rightarrow \infty}{\lim}\left|z^{n} R_{n}(z)\right| \leq \underset{z \rightarrow \infty}{\lim} \frac{p(p+1) \cdots(p+n)}{z^{p}}=0
and it follows that \lim _{z \rightarrow \infty} z^{n} R_{n}(z)=0. Hence, the required result is proved for real z>0. The result can also be extended to complex values of z.
Note that since
\left|\frac{u_{n+1}}{u_{n}}\right|=\left|\frac{p(p+1) \cdots(p+n) / z^{p+n+1}}{p(p+1) \cdots(p+n-1) / z^{p+n}}\right|=\frac{p+n}{|z|}
where u_{n} is the nth term of the series, we have for all fixed z
\underset{n \rightarrow \infty}{\lim}\left|\frac{u_{n+1}}{u_{n}}\right|=\infty
and the series diverges for all z by the ratio test.