Question 6.7: A particle P in an inertial reference frame has an initial v...

A particle P in an inertial reference frame has an initial velocity v0\mathbf{v}_0  at the place  x0\mathbf{x}_0,  and subsequently moves under the influence of a force that is proportional to the time and acts in a fixed direction e. Find the position and velocity of P at time t .

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The force on P is given by  F(P,t)=kte\mathbf{F}(P, t)=k t \mathbf{e} , where k is a constant and e is a constant unit vector. Use of this relation in (6.1) and integration of the result as shown in (6.20) with the initial value   v(P,0)=v0\mathbf{v}(P, 0)=\mathbf{v}_0  yields the velocity  v(P,t)=kt2/2me+v0\mathbf{v}(P, t)=k t^2 / 2 m \mathbf{e}+\mathbf{v}_0 .  With the initial value  x(P,0)=x0\mathbf{x}(P, 0)=\mathbf{x}_0,   a second integration described by (6.21) yields the motion  x(P,t)=kt3/6me + v0t + x0\mathbf{x}(P, t)=k t^3 / 6 m \mathbf{e}  +  \mathbf{v}_0 t  +  \mathbf{x}_0.  Let the reader show that if P starts at the origin with velocity v0=v0j\mathbf{v}_0=v_0 \mathbf{j}  and the force acts in the direction  e=ie=i,  the path of P is a cubic parabola  x=cy3x=c y^3. Identify the constant c.

F=p˙=ma=mv˙=mx¨\mathbf{F}=\dot{\mathbf{p}}=m \mathbf{a}=m \dot{\mathbf{v}}=m\ddot{\mathbf{x}}                (6.1)

v(P,t)=1mF(P,t)dt + c1\mathbf{v}(P, t)=\frac{1}{m} \int \mathbf{F}(P, t) d t  +  \mathbf{c}_1                       (6.20)

x(P,t)=v(P,t)dt + c2\mathbf{x}(P, t)=\int \mathbf{v}(P, t) d t  +  \mathbf{c}_2                 (6.21)

Related Answered Questions