Question 6.14: A pendulum bob B attached to a rigid rod of negligible mass ...

A pendulum bob B attached to a rigid rod of negligible mass and length l is  suspended from a smooth movable support at O that oscillates about the natural undeformed state of the spring so that  x(t)=x_O \sin \Omega t  in Fig. 6.19. Apply equation (6.80) to derive the equation of motion for the bob.

\mathbf{M}_O=\dot{\mathbf{h}}_O  +  \mathbf{v}_O \times \mathbf{p}                 (6.80)

Screenshot 2022-10-10 154611
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The forces that act on the pendulum bob B are shown in the free body diagram in Fig. 6.19. Notice that the tension T in the rod at B is directed through the moving point O. Moreover, the spring force and normal reaction force of the smooth supporting surface also are directed through O; but these forces do not act on B, so they hold no direct importance in its equation of motion. Consequently, the moment about the point O of the forces that act on B at  \mathbf{x}_B=\ell \mathbf{e}_r   in the cylindrical system shown in Fig. 6.19 is given by

\mathbf{M}_O=\mathbf{x}_B \times \mathbf{W}=-\ell W \sin \phi \mathbf{k}.                       (6.81a)

The absolute velocity of B is determined by  \mathbf{v}_B=\mathbf{v}_O  +  \boldsymbol{\omega} \times \mathbf{x}_B,  in which  \omega=\dot{\phi} \mathbf{k}  and  \mathbf{v}_O=\dot{x} \mathbf{i}=x_O \Omega \cos \Omega t \mathbf{i}=v_O \mathbf{i}.  Thus,

\mathbf{v}_B=v_O \mathbf{i}  +  \ell \dot{\phi} \mathbf{e}_\phi, \quad \text { with } \quad v_O=x_O \Omega \cos \Omega t.             (6.81b)

With the linear momentum  \mathbf{p}=m \mathbf{v}_B  and use of (6.81b) , we find

\mathbf{v}_O \times \mathbf{p}=v_O \mathbf{i} \times m \ell \dot{\phi} \mathbf{e}_\phi=m v_O \dot{\phi} \ell \sin \phi \mathbf{k}.                (6.81c)

The moment of momentum about O is given by   \mathbf{h}_O=\mathbf{x}_B \times \mathbf{p}=m \ell\left(v_O \cos \phi  +  \right. \ell \dot{\phi}) \mathbf{k},   and its time rate of change is

\dot{\mathbf{h}}_O=m \ell\left(a_O \cos \phi  –  v_O \dot{\phi} \sin \phi  +  \ell \ddot{\phi}\right) \mathbf{k}                (6.81d)

in which  a_O=\dot{v}_O=-x_O \Omega^2 \sin \Omega t.  Substituting (6.81a), (6.8Ic), and (6.81d) into (6.80), we find  -\ell W \sin \phi \mathbf{k}=m \ell\left(-x_O \Omega^2 \sin \Omega t \cos \phi  +  \ell \ddot{\phi}\right) \mathbf{k}.  Hence, with W = mg, the equation of motion for the bob may be written as

\ddot{\phi}  +  p^2 \sin \phi=\frac{x_O \Omega^2}{\ell} \cos \phi \sin \Omega t,               (6.81e)

where  p^2=g / \ell.  The solution of (6.81e) for small  \phi(t)  is discussed later in our study of mechanical vibrations. (See Example 6.15 , page 161.)

Related Answered Questions