Question 11.4: A pipe network with two loops is shown in Fig. 11.9. Determi...
A pipe network with two loops is shown in Fig. 11.9. Determine the flow in each pipe for an inflow of 5 units at the junction A and outflows of 2.0 units and 3.0 units at junctions D and C respectively. The resistance R for different pipes are shown in the figure.

Learn more on how we answer questions.
Flow direction is assumed positive clockwise for both the loops ABD and BCD. The iterative solutions based on Hardy-Cross method has been made.
The five trials have been made and the results of each trial is shown in Fig. 11.10; for each trial, dQ is calculated from Eq. (11.31). After fifth trial, the error dQ is so small that it changes the flow only in the third place of decimal. Hence the calculation has not been continued beyond the fifth trial.
d Q=\frac{\Sigma R|Q| Q}{\Sigma 2 R|Q|} (11.31)
First trial
Loop ABD | Loop BCD | ||
R|Q|Q | 2R|Q| | R|Q|Q | 2R|Q| |
120 \times 2^{2}=480 | 2 × 120 × 2 = 480 | 300 \times(1.2)^{2}=432 | 2 × 300 × 1.2 = 720 |
400 \times(0.8)^{2}=256 | 2 × 400 × 0.8 = 640 | -150 \times(1.8)^{2}=-486 | 2 × 150 × 1.8 = 540 |
-200 \times 3^{2}=-1800 | 2 × 400 × 0.8 = 640 | -400 \times(0.8)^{2}=-256 | 2 × 400 × 0.8 = 640 |
\Sigma R|Q| Q=-1064 | 2 \Sigma R|Q|=2320 | \Sigma R|Q| Q=-310 | 2 \Sigma R|Q|=1900 |
d Q=\frac{\sum R|Q| Q}{\sum 2 R|Q|} | d Q=\frac{\sum R|Q| Q}{\sum 2 R|Q|} | ||
=\frac{-1064}{2320} | =\frac{-300}{1900} | ||
=-0.46 | =-0.16 |
Second trial:
Loop ABD | Loop BCD | ||
R|Q|Q | 2R|Q| | R|Q|Q | 2R|Q| |
120 \times(2.46)^{2}=726.19 | 2 \times 120 \times 2.46=590.40 | 300 \times(1.36)^{2}=554.88 | 2 \times 300 \times 1.36=816 |
400 \times(1.10)^{2}=484.00 | 2 \times 400 \times 1.10=880.00 | -150 \times(1.64)^{2}=-403.44 | 2 \times 150 \times 1.64=492 |
-1200 \times(2.54)^{2}=-1290.32 | 2 \times 200 \times 2.54=1016.00 | -400 \times(1.10)^{2}=-484.00 | 2 \times 400 \times 1.10=880 |
\Sigma R|Q| Q=-50.13 | 2 \Sigma R|Q|=2486.40 | \Sigma R|Q| Q=-332.56 | 2 \Sigma R|Q|=2188 |
d Q=\frac{\sum R|Q| Q}{\sum 2 R|Q|} | d Q=\frac{\sum R|Q| Q}{\sum 2 R|Q|} | ||
=\frac{-50.13}{2486.40} | =\frac{-332.56}{2188} | ||
=-0.02 | =-0.15 |
Third trial:
Loop ABD | Loop BCD | ||
R|Q|Q | 2R|Q| | R|Q|Q | 2R|Q| |
120 \times(2.48)^{2}=738.05 | 2 \times 120 \times 2.48=595.20 | 300 \times(1.51)^{2}=684.03 | 2 \times 300 \times 1.51=906.00 |
400 \times(0.97)^{2}=376.36 | 2 \times 400 \times 0.97=776.00 | -150 \times(1.49)^{2}=-333.01 | 2 \times 150 \times 1.49=447.00 |
-200 \times(2.52)^{2}=-1270.08 | 2 \times 200 \times 2.52=1008.00 | -400 \times(0.97)^{2}=-376.36 | 2 \times 400 \times 0.97=776.00 |
\Sigma R|Q| Q=-155.67 | 2 \Sigma R|Q|=2379.20 | \Sigma R|Q| Q=-25.34 | 2 \sum R|Q|=2129 |
d Q=\frac{\sum R|Q| Q}{\sum 2 R|Q|} | d Q=\frac{\sum R|Q| Q}{\sum 2 R|Q|} | ||
=\frac{-155.67}{2379.67} | =\frac{-25.34}{2129} | ||
=-0.06 | =-0.01 |
Fourth trial:
Loop ABD | Loop BCD | ||
R|Q|Q | 2R|Q| | R|Q|Q | 2R|Q| |
120 \times(2.54)^{2}=774.20 | 2 \times 120 \times 2.54=609.60 | 300 \times(1.52)^{2}=693.12 | 2 \times 300 \times 1.52=912.00 |
400 \times(1.02)^{2}=416.16 | 2 \times 400 \times 1.02=816.00 | -150 \times(1.48)^{2}=-328.56 | 2 \times 150 \times 1.48=444.00 |
-200 \times(2.46)^{2}=-1210.32 | 2 \times 200 \times 2.46=984.00 | -400 \times(1.02)^{2}=-416.16 | 2 \times 400 \times 1.02=816.00 |
\Sigma R|Q| Q=-19.96 | 2 \Sigma R|Q|=2409.60 | \Sigma R|Q| Q=-51.6 | 2 \Sigma R|Q|=2172 |
d Q=\frac{\sum R|Q| Q}{\sum 2 R|Q|} | d Q=\frac{\sum R|Q| Q}{\sum 2 R|Q|} | ||
=\frac{-19.96}{2409.60} | =\frac{-51.6}{2172} | ||
=-0.008 | =-0.02 |
Fifth trial:
Loop ABD | Loop BCD | ||
R|Q|Q | 2R|Q| | R|Q|Q | 2R|Q| |
120 \times(2.58)^{2}=779.08 | 2 \times 120 \times 2.58=619.20 | 300 \times(1.54)^{2}=711.48 | 2 \times 300 \times 1.54=924.00 |
400 \times(1.008)^{2}=406.42 | 2 \times 400 \times 1.008=806.40 | -150 \times(1.46)^{2}=-319.74 | 2 \times 150 \times 1.46=438.00 |
-200 \times(2.452)^{2}=-1202.46 | 2 \times 200 \times 2.452=980.80 | -400 \times(1.08)^{2}=-406.42 | 2 \times 400 \times 1.008=806.40 |
\Sigma R|Q| Q=-16.96 | 2 \Sigma R|Q|=2406.40 | \Sigma R|Q| Q=-14.68 | 2 \Sigma R|Q|=2168.40 |
d Q=\frac{\sum R|Q| Q}{\sum 2 R|Q|} | d Q=\frac{\sum R|Q| Q}{\sum 2 R|Q|} | ||
=\frac{-16.96}{2406.40} | =\frac{-14.68}{2168.40} | ||
=-0.007 | =-0.007 |
