Question 17.4: A Platinum Resistance Thermometer Goal Apply the temperature...

A Platinum Resistance Thermometer

Goal Apply the temperature dependence of resistance.

Problem A resistance thermometer, which measures temperature by measuring the change in resistance of a conductor, is made of platinum and has a resistance of 50.0 Ω at 20.0°C. (a) When the device is immersed in a vessel containing melting indium, its resistance increases to 76.8 Ω. From this information, find the melting point of indium. (b) The indium is heated further until it reaches a temperature of 235°C. What is the ratio of the new current in the platinum to the current I_{ mp } at the melting point?

Strategy In part (a), solve Equation 17.7 for T-T_{0} and get α for platinum from Table 17.1, substituting known quantities. For part (b), use Ohm’s law in Equation 17.7.

R=R_{0}\left[1+\alpha\left(T-T_{0}\right)\right]

 

TABLE 17.1

Resistivities and Temperature Coefficients of Resistivity for Various Materials (at 20°C)
\begin{array}{ccc} & &\begin{array}{c}\text { Temperature Coefficient } \\\text { of Resistivity }\end{array} \\\text { Material } & \text { Resistivity } & {\left[(\Omega \cdot C )^{-1}\right]} \\\end{array}
\begin{array}{lcc} \text { Silver } & 1.59 \times 10^{-8} & 3.8 \times 10^{-3} \\\text { Copper } & 1.7 \times 10^{-8} & 3.9 \times 10^{-3} \\\text { Gold } & 2.44 \times 10^{-8} & 3.4 \times 10^{-3} \\\text { Aluminum } & 2.82 \times 10^{-8} & 3.9 \times 10^{-3} \\\text { Tungsten } & 5.6 \times 10^{-8} & 4.5 \times 10^{-3} \\\text { Iron } & 10.0 \times 10^{-8} & 5.0 \times 10^{-3} \\\text { Platinum } & 11 \times 10^{-8} & 3.92 \times 10^{-3} \\\text { Lead } & 22 \times 10^{-8} & 3.9 \times 10^{-3} \\\text { Nichrome }^{a} & 150 \times 10^{-8} & 0.4 \times 10^{-3} \\\text { Carbon } & 3.5 \times 10^{5} & -0.5 \times 10^{-3} \\\text { Germanium } & 0.46 & -48 \times 10^{-3} \\\text { Silicon } & 640 & -75 \times 10^{-3} \\\text { Glass } & 10^{10}-10^{14} & \\\text { Hard rubber } & \approx 10^{13} & \\\text { Sulfur } & 10^{15} & \\\text { Quartz (fused) } & 75 \times 10^{16} & \\\end{array}
{ }^{a} \text { A nickel-chromium alloy commonly used in heating elements. }
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Find the melting point of indium.
Solve Equation 17.7 for T-T_{0} :

\begin{aligned}T-T_{0} &=\frac{R-R_{0}}{\alpha R_{0}}=\frac{76.8 \Omega-50.0 \Omega}{\left[3.92 \times 10^{-3}\left({ }^{\circ} C \right)^{-1}\right][50.0 \Omega]} \\&=137^{\circ} C\end{aligned}

Substitute T_{0}=20.0^{\circ} C and obtain the melting point of indium:

T_{ mp }=157^{\circ} C

(b) Find the ratio of the new current to the old when the temperature rises from 157°C to 235°C.
Write Equation 17.7, with R_{0} \text { and } T_{0} \text { replaced by } R_{ mp } and T_{ mp } , the resistance and temperature at the melting point.

R=R_{ mp }\left[1+\alpha\left(T-T_{ mp }\right)\right]

According to Ohm’s law, R=\Delta V / I \text { and } R_{ mp }=\Delta V / I_{ mp } . Substitute these expressions into Equation 17.7:

\frac{\Delta V}{I}=\frac{\Delta V}{I_{ mp }}\left[1+\alpha\left(T-T_{ mp }\right)\right]

Cancel the voltage differences, invert the two expressions, and then divide both sides by I_{ mp } :

\frac{I}{I_{ mp }}=\frac{1}{1+\alpha\left(T-T_{ mp }\right)}

Substitute T=235^{\circ} C , T_{ mp }=157^{\circ} C , and the value for α, obtaining the desired ratio:

\frac{I}{I_{ mp }}=0.766

Related Answered Questions