Question 13.7: (a) Plot the ratio of peak deformation in an inelastic syste...

(a) Plot the ratio of peak deformation in an inelastic system to that of the peak deformation of the corresponding elastic system for different ductility ratios equal to 1, 1.5, 2, 4 and 6 when this system is subjected to the ground motion of Example 13.5.
(b) A SDOF system has a mass of 100 kg and a period of 0.4 sec. It has 5% viscous damping and exhibits elasto-plastic behaviour in the inelastic region. Determine the maximum deformations for a ductility of 1 and 4 when this system is subjected to the ground motion of Example 13.5.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The relation between the peak deformations in a SDOF inelastic system and the corresponding elastic system were derived in Equation (13.35). The same are shown in Table 13.5 for different ductility and plotted in Figure 13.34. Although the calculation are shown for period T upto 100 sec, the plot is shown only upto 1 sec for clarity. Similar calculations can be done for other values of ductility

F_y=F_O \ \text{and} \ x_m=\mu x_0        (13.35a)

F_y=\frac{F_0}{R}=\frac{F_0}{\sqrt{2\mu -1}x_0}      (13.35b)

x_m=\frac{\mu }{R}x_0=\frac{\mu }{\sqrt{2\mu -1}}x_0      (13.35c)

F_y=\frac{F_0}{\mu } \ \text{and} \ x_m= x_0           (13.35d)

Table 13.5 Relation between Maximum Elastic and Inelastic Displacements with Period T for Different Ductility μ

µ = 1 µ = 1.5 µ = 2
S_{a}/g S_{de}(cm} S_{d}/S_{de} R S_{a}/g S_{d} S_{d}/S_{de} R S_{a}/g S_{d} S_{d}/S_{de}
1 0.01 0.0025 1 1 1 0.0037 1.5 1 1 0.0050 2
1 0.02 0.0099 1 1 1 0.0149 1.5 1 1 0.0199 2
1 0.03 0.0224 1 1 1 0.0336 1.5 1 1 0.0448 2
1.3 0.04 0.0517 1 1.0724 1.2123 0.0724 1.3988 1.1171 1.1637 0.0926 1.7904
1.5 0.05 0.0933 1 1.1321 1.3250 0.1236 1.325 1.2173 1.2323 0.1533 1.643
1.8 0.06 0.1612 1 1.1833 1.5211 0.2043 1.2676 1.3058 1.3785 0.2469 1.5317
1.9 0.07 0.2316 1 1.2285 1.5466 0.2828 1.221 1.3856 1.3713 0.3343 1.4434
2 0.08 0.3184 1 1.269 1.5761 0.3764 1.1821 1.4587 1.3711 0.4365 1.3711
2.2 0.09 0.4433 1 1.3058 1.6848 0.5092 1.1487 1.5263 1.4414 0.5808 1.3103
2.4 0.1 0.597 1 1.3396 1.7916 0.6685 1.1197 1.5895 1.5099 0.7512 1.2583
2.6 0.11 0.7825 1 1.371 1.8964 0.8562 1.0941 1.6489 1.5768 0.9492 1.2129
2.71 0.125 1.0533 1 1.4142 1.9163 1.1172 1.0607 1.7321 1.5646 1.2162 1.1547
2.71 0.13 1.1392 1 1.4142 1.9163 1.2083 1.0607 1.7321 1.5646 1.3155 1.1547
2.71 0.14 1.3212 1 1.4142 1.9163 1.4014 1.0607 1.7321 1.5646 1.5256 1.1547
2.71 0.15 1.5167 1 1.4142 1.9163 1.6087 1.0607 1.7321 1.5646 1.7513 1.1547
2.71 0.16 1.7257 1 1.4142 1.9163 1.8304 1.0607 1.7321 1.5646 1.9926 1.1547
2.71 0.17 1.9481 1 1.4142 1.9163 2.0663 1.0607 1.7321 1.5646 2.2495 1.1547
2.71 0.18 2.1841 1 1.4142 1.9163 2.3165 1.0607 1.7321 1.5646 2.5219 1.1547
2.71 0.19 2.4335 1 1.4142 1.9163 2.5811 1.0607 1.7321 1.5646 2.8099 1.1547
2.71 0.2 2.6964 1 1.4142 1.9163 2.8599 1.0607 1.7321 1.5646 3.1135 1.1547
2.71 0.22 3.2626 1 1.4142 1.9163 3.4605 1.0607 1.7321 1.5646 3.7673 1.1547
2.71 0.24 3.8828 1 1.4142 1.9163 4.1183 1.0607 1.7321 1.5646 4.4834 1.1547
2.71 0.26 4.5569 1 1.4142 1.9163 4.8333 1.0607 1.7321 1.5646 5.2618 1.1547
2.71 0.28 5.2849 1 1.4142 1.9163 5.6055 1.0607 1.7321 1.5646 6.1025 1.1547
2.71 0.3 6.0668 1 1.4142 1.9163 6.4348 1.0607 1.7321 1.5646 7.0054 1.1547
2.71 0.32 6.9027 1 1.4142 1.9163 7.3214 1.0607 1.7321 1.5646 7.9706 1.1547
2.71 0.33 7.3409 1 1.4142 1.9163 7.7862 1.0607 1.7321 1.5646 8.4765 1.1547
2.71 0.35 8.2576 1 1.4142 1.9163 8.7585 1.0607 1.7321 1.5646 9.5351 1.1547
2.71 0.38 9.7339 1 1.4142 1.9163 10.3243 1.0607 1.7321 1.5646 11.2397 1.1547
2.71 0.4 10.7855 1 1.4142 1.9163 11.4397 1.0607 1.7321 1.5646 12.454 1.1547
2.71 0.43 12.464 1 1.4142 1.9163 13.22 1.0607 1.7321 1.5646 14.3921 1.1547
2.71 0.47 14.8907 1 1.4142 1.9163 15.794 1.0607 1.8800 1.4415 15.8412 1.0638
2.71 0.49 16.1849 1 1.4700 1.8435 16.5152 1.0204 1.9600 1.3827 16.5152 1.0204
2.71 0.5 16.8523 1 1.5000 1.8067 16.8523 1.0000 2.0000 1.3550 16.8523 1.0000
2.3 0.6 20.5959 1 1.5000 1.5333 20.5959 1.0000 2.0000 1.1500 20.5959 1.0000
1.95 0.7 23.7673 1 1.5000 1.3 23.7673 1.0000 2.0000 0.9750 23.7673 1.0000
1.77 0.8 28.1775 1 1.5000 1.18 28.1775 1.0000 2.0000 0.8850 28.1775 1.0000
1.6 0.9 32.237 1 1.5000 1.0667 32.237 1.0000 2.0000 0.8000 32.237 1.0000
1.5 1 37.3114 1 1.5000 1 37.3114 1.0000 2.0000 0.7500 37.3114 1.0000
1 1.5 55.967 1 1.5000 0.6667 55.967 1.0000 2.0000 0.5000 55.967 1.0000
0.7 2 69.6479 1 1.5000 0.4667 69.6479 1.0000 2.0000 0.3500 69.6479 1.0000
0.55 2.5 85.5052 1 1.5000 0.3667 85.5052 1.0000 2.0000 0.2750 85.5052 1.0000
0.45 3 100.7406 1 1.5000 0.3 100.7406 1.0000 2.0000 0.2250 100.7406 1.0000
0.313 4 124.5702 1 1.5000 0.2087 124.5702 1.0000 2.0000 0.1565 124.5702 1.0000
0.2 5 124.3712 1 1.5000 0.1333 124.3712 1.0000 2.0000 0.1000 124.3712 1.0000
0.139 6 124.4707 1 1.5000 0.0927 124.4707 1.0000 2.0000 0.0695 124.4707 1.0000
0.102 7 124.3214 1 1.5000 0.068 124.3214 1.0000 2.0000 0.051 124.3214 1.0000
0.078 8 124.1722 1 1.5000 0.052 124.1722 1.0000 2.0000 0.039 124.1722 1.0000
0.062 9 124.9184 1 1.5000 0.0413 124.9184 1.0000 2.0000 0.0310 124.9184 1.0000
0.05 10 124.3712 1 1.5000 0.0333 124.3712 1.0000 2.0000 0.0250 124.3712 1.0000
0.0084 20 83.5774 1 1.5000 0.0056 83.5774 1.0000 2.0000 0.0042 83.5774 1.0000
0.0029 30 64.9218 1 1.5000 0.0019 64.9218 1.0000 2.0000 0.0015 64.9218 1.0000
0.00156 40 62.0861 1 1.5000 0.001 62.0861 1.0000 2.0000 0.0008 62.0861 1.0000
0.001 50 62.1856 1 1.5000 0.0007 62.1856 1.0000 2.0000 0.0005 62.1856 1.0000
0.0007 60 62.6831 1 1.5000 0.0005 62.6831 1.0000 2.0000 0.0004 62.6831 1.0000
0.00052 70 62.7701 1 1.5000 0.0003 62.7701 1.0000 2.0000 0.0003 62.7701 1.0000
0.00039 80 62.0861 1 1.5000 0.0003 62.0861 1.0000 2.0000 0.0002 62.0861 1.0000
0.00031 90 62.4592 1 1.5000 0.0002 62.4592 1.0000 2.0000 0.0002 62.4592 1.0000
0.00025 100 62.1856 1 1.5000 0.0002 62.1856 1.0000 2.0000 0.0001 62.1856 1.0000

(b) For the ground motion of Example 13.5, period T_{C} = 0.5 sec.

∴ Inelastic acceleration = \frac{A}{\sqrt{2\mu -1} }             (13.34c)

Elastic acceleration A = 1 g × 2.71 = 2.71 g
∴ Inelastic acceleration = \frac{2.71 g}{\sqrt{2\mu -1} }

and
Yield strength              F_{y}=\frac{100\times 2.71g}{\sqrt{2\mu -1} }

Also, the maximum deformation is given by Equations (13.35c) for T < T_{C}

 x_{m}=\frac{\mu }{R} x_{0}=\frac{\mu }{\sqrt{2\mu -1} } x_{0}           (13.35c)

Maximum elastic deformation  x_{0}=\frac{A}{\omega ^{2}} =\left\lgroup\frac{T}{2\pi } \right\rgroup^{2}A

∴                        x_{m}=\frac{\mu }{\sqrt{2\mu -1} } \left\lgroup\frac{T}{2\pi } \right\rgroup^2 A

=\frac{\mu }{\sqrt{2\mu -1} } \left\lgroup\frac{0.4}{2\pi } \right\rgroup^{2} 2.71 g

=\frac{0.1077\mu }{\sqrt{2\mu -1} } m

The maximum strength and maximum deformation are given as follows:
For µ = 1, maximum strength = 271 g = 2658.51 N, maximum deformation x_{0} = 0.1077 m
For µ = 4, maximum strength = 1004.8 N, maximum deformation x_{m} = 0.1628 m

Annotation 2022-10-18 203533

Related Answered Questions

Question: 13.4

Verified Answer:

Let mass = 1, stiffness = 39.5, Period = 1 sec, Da...
Question: 13.3

Verified Answer:

The calculations were carried out in an Excel shee...