Question 7.4: A rectangular beam 200 mm deep and 300 mm wide is simply sup...

A rectangular beam 200 mm deep and 300 mm wide is simply supported over a span of 8 m. What uniformly distributed load per metre the beam may carry, if the bending stress is not to exceed 120 N/mm².

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given :
Depth of beam,    d = 200 mm
Width of beam,    b = 300 mm
Length of beam,  L = 8 m
Max. bending stress, σ_{\max} = 120  N/mm^2

Let w = Uniformly distributed load per metre length over the beam
(Fig. 7.11 (a) shows the section of the beam.)
Section modulus for a rectangular section is given by equation (7.7).
(7.7):          Z=\frac{I}{y_{\max }}=\frac{b d^3}{12 \times\left(\frac{d}{2}\right)}=\frac{b d^3}{12} \times \frac{2}{d}=\frac{b d^2}{6}

∴              Z=\frac{b d^2}{6}=\frac{300 \times 200^2}{6}=2000000  mm ^3

Max. B.M. for a simply supported beam carrying uniformly distributed load as shown in Fig. 7.11 is at the centre of the beam. It is given by

M=\frac{w \times L^2}{8}=\frac{w \times 8^2}{8} \quad (∵  L = 8  m) \\ \space \\ = 8w  Nm = 8w × 1000  Nmm \\ \space \\ = 8000w  Nmm \quad (∵  1  m = 1000  mm)

Now using equation (7.6), we get
(7.6):  M = σ_{\max} . Z

M = σ_{\max .} . Z

or        8000w = 120 × 2000000

∴              w=\frac{120 \times 2000000}{8000}=30 \times 1000  N / m = \pmb{3 0  k N / m.}

7.11
7.11a

Related Answered Questions