Question 3.16: A rectangular beam, width b and depth d has a temperature va...

A rectangular beam, width b and depth d has a temperature variation given by:

T = T_{o} \left\{1  –  \frac{4\gamma ^{2}}{d^{2}} \right\}
3.143
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

There is no restraint or applied loading (i.e. P = M = 0). Obtain the stress distribution.
Axial force equilibrium (equation (3.94))

P = E \bar{\varepsilon } A  –  E\alpha \int_{A}^{}{TdA}

 

0 = E \bar{\varepsilon }\cdot bd  –  E\alpha \int_{\frac{-d}{2} }^{d/2}{T_{o} \left\{1  –  \frac{4\gamma ^{2}}{d^{2}} \right\} (bd\gamma )}

∴       \bar{\varepsilon } = \frac{\alpha }{d} T_{o} \int_{\frac{-d}{2} }^{d/2}{T_{o} \left\{1  –  \frac{4\gamma ^{2}}{d^{2}} \right\} d\gamma }

i.e.    \bar{\varepsilon } = \frac{\alpha }{d} T_{o} \left[\gamma  –  \frac{4\gamma ^{3}}{3d^{2}}\right]_{-d/2}^{d/2}

∴       \bar{\varepsilon } = \frac{2}{3} \alpha \cdot T_{o}

With M = O we can obtain 1/R from the moment equilibrium (equation (3.95)) but from symmetry we can see that (1/R) = O.
Using equation (3.93)

\sigma _{x} = E \left\{\bar{\varepsilon } + \frac{\gamma }{R}  –  \alpha T \right\}

 

= E \left(\frac{2}{3}\alpha T_{o} + O  –  \alpha T_{o} \left(1  –  \frac{4\gamma ^{2}}{d^{2}} \right) \right)

 

= E\alpha T_{o} \left(\frac{4\gamma ^{2}}{d^{2}}  –  \frac{1}{3} \right)

 

At y = O,         \sigma _{x} = \frac{-  E\alpha T_{o}}{3}

At = \frac{\pm d}{2},             \sigma _{x} = E\alpha T_{o} \left(1  –  \frac{1}{3} \right) = \frac{2E\alpha T_{o}}{3}

\sigma _{x} = 0       When    \frac{4\gamma ^{2}}{d^{2}} = \frac{1}{3}       i.e. at  γ = ±0.287 d

This is the stress distribution away from the ends.
At the ends, \sigma _{x} = 0   and there is a gradual transition between the two.

3.144

Related Answered Questions