Question 12.7: A rectangular channel carries 5.66 m^3/s. Find the critical ...
A rectangular channel carries 5.66 \mathrm{~m}^{3} / \mathrm{s} . Find the critical depth hc and critical velocity V_{c} for (i) a width of 3.66 m and (ii) a width of 2.74 m, (iii) what slope will produce the critical velocity in (i) if n = 0.020?
Learn more on how we answer questions.
(i) Critical depth is defined as the depth at which the flow velocity is given by its critical value as
V_{c}=\left(g h_{c}\right)^{1 / 2}Again, V_{c}=Q / b h_{c}=5.66 / 3.66 h_{c}
Therefore, 5.66 / 3.66 h_{c}=\left(g h_{c}\right)^{1 / 2}
Or h_{c}=\left[\frac{5.66 \times 5.66}{3.66 \times 3.66 \times 9.81}\right]^{1 / 3}=0.625 \mathrm{~m}
Now, V_{c}=(9.81 \times 0.625)^{1 / 2}=2.48 \mathrm{~m} / \mathrm{s}
(ii) When the width is 2.74 m
h_{c}=\left[\frac{5.66 \times 5.66}{2.74 \times 2.74 \times 9.81}\right]^{1 / 3}=0.758 \mathrm{~m}And, V_{c}=(9.81 \times 0.758)^{1 / 2}=2.73 \mathrm{~m} / \mathrm{s}
(iii) Applying Eq. (12.9), we can write
V=(1 / n) R_{h}^{2 / 3} S^{1 / 2} (12.9)
V_{c}=\frac{R_{c}^{2 / 3} S^{1 / 2}}{n}where R_{c} is the hydraulic radius at the critical flow and is given by
R_{c}=\frac{3.66 \times 0.625}{(3.66+2 \times 0.625)}=0.466Hence, 2.48=\frac{(0.466)^{2 / 3}}{0.02} S^{1 / 2}
which gives S = 0.0068