Question 12.7: A rectangular channel carries 5.66 m^3/s. Find the critical ...

A rectangular channel carries 5.66 \mathrm{~m}^{3} / \mathrm{s} . Find the critical depth hc and critical velocity V_{c} for (i) a width of 3.66 m and (ii) a width of 2.74 m, (iii) what slope will produce the critical velocity in (i) if n = 0.020?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(i) Critical depth is defined as the depth at which the flow velocity is given by its critical value as

V_{c}=\left(g h_{c}\right)^{1 / 2}

Again,        V_{c}=Q / b h_{c}=5.66 / 3.66 h_{c} 

Therefore, 5.66 / 3.66 h_{c}=\left(g h_{c}\right)^{1 / 2}

Or     h_{c}=\left[\frac{5.66 \times 5.66}{3.66 \times 3.66 \times 9.81}\right]^{1 / 3}=0.625 \mathrm{~m} 

Now, V_{c}=(9.81 \times 0.625)^{1 / 2}=2.48 \mathrm{~m} / \mathrm{s}

(ii) When the width is 2.74 m

h_{c}=\left[\frac{5.66 \times 5.66}{2.74 \times 2.74 \times 9.81}\right]^{1 / 3}=0.758 \mathrm{~m}

And, V_{c}=(9.81 \times 0.758)^{1 / 2}=2.73 \mathrm{~m} / \mathrm{s}

(iii) Applying Eq. (12.9), we can write

V=(1 / n) R_{h}^{2 / 3} S^{1 / 2}                     (12.9)

V_{c}=\frac{R_{c}^{2 / 3} S^{1 / 2}}{n}

where R_{c}  is the hydraulic radius at the critical flow and is given by

R_{c}=\frac{3.66 \times 0.625}{(3.66+2 \times 0.625)}=0.466 

Hence,       2.48=\frac{(0.466)^{2 / 3}}{0.02} S^{1 / 2} 

which gives                 S = 0.0068

Related Answered Questions