Question 17.8: A rectangular-cross-section header is made from two C-sectio...
A rectangular-cross-section header is made from two C-sections and butt welded along the center of the short sides.The weld joints are spot examined with the backing strip left in place (from Table UW-12 of the ASME Code, VIII-1, E =0.8). The design pressure is 115 psi, and the material is SA-515 Grade 70 with an allowable stress S =17,500 psi. The long side is 13.5 by 1 in. thick, and the short side is 6 by 0.625 in. thick. One long side contains a row of 1.5 in. diameter holes on 3.75 in. centers. Is the design acceptable?
Learn more on how we answer questions.
1) Calculate the ligament efficiency of the long side with the tube holes:
e_{ m }=e_{ b }=\frac{3.75-1.5}{3.75} =0.60
2) Calculate the moments of inertia of both the long side and the short side:
I_{1}=\frac{t_{1}^{3}}{12}=\frac{(0.625)^{3}}{12} =0.0203
I_{2}=\frac{t_{2}^{3}}{12}=\frac{(1)^{3}}{12} =0.0833
3) Calculate the bending moment at the corner, M_{Q}, using Eq. (17.18):
M_{ Q }=\frac{P}{12}\left(\frac{h^{3} / I_{2}+H^{3} / I_{1}}{h / I_{2}+H / I_{1}}\right) (17.18)
M_{ Q }=\frac{115}{12}\left[\frac{(13.5)^{3} / 0.0833+(6)^{3} / 0.0203}{13.5 / 0.0833+6 / 0.0203}\right]= 841.35.
4) Calculate the bending moment at the midpoint of the long side, M_{M}, using Eq. (17.19):
M_{ M }=M_{ Q }-\frac{P h^{2}}{8}=841.35 -\frac{(115)(13.5)^{2}}{8}=-1778.505) Calculate the bending moment at the midpoint of the short side, MN, using Eq. (17.20):
M_{ N }=M_{ Q }-\frac{P H^{2}}{8}=841.35-\frac{(115)(6)^{2}}{8} =323.85
6) Calculate the bending stress at the corner of the long side with the holes:
\left(S_{ b }\right)_{ QM }=\frac{M_{ Q } c_{2}}{I_{2}}=\frac{(841.35)(0.5)}{(0.0833)} =5050 psi
7) Calculate the bending stress at the midpoint of the long side with the holes ( e_{ b } =0.60; E =1.0):
\left(S_{ b }\right)_{ M }=\frac{M_{ M } c_{2}}{I_{2} e_{ b }}=\frac{(1778.50)(0.5)}{(0.0833)(0.6)} =17,790 psi
8) Calculate the bending stress at the corner of the short side (E =1.0):
\left(S_{ b }\right)_{ QN }=\frac{M_{ Q } c_{1}}{I_{1}}=\frac{(841.35)(0.3125)}{(0.0203)} =12,950 psi
9) Calculate the bending stress at the midpoint of the short side (E =0.80):
\left(S_{ b }\right)_{ N }=\frac{M_{ N } c_{1}}{I_{1}}=\frac{(323.85)(0.3125)}{(0.0203)} =4990 psi
10) Calculate the membrane stress on the long side ( e_{ m } =0.60; E =1.0):
\left(S_{ m }\right)_{ M }=\frac{P H}{2 t e_{ m }}=\frac{(115)(6)}{2(1)(0.6)} =580 psi
Allowable stress = SE = (17,500)(1.0)
= 17,500 psi.
11) Calculate the membrane stress on the short side (E =0.80):
\left(S_{ m }\right)_{ N }=\frac{P h}{2 t_{1}}=\frac{(115)(13.5)}{2(0.625)} =1240 psi
Allowable stress = SE = (17,500)(0.8)
= 14,000 psi.
12) Total stress at the corner of long side:
\left(S_{ t }\right)_{ QM }=\left(S_{ m }\right)_{ M }+\left(S_{ b }\right)_{ QM } =580+5050
= 5630 psi
Allowable stress = 1.5SE = 1.5(17,500)(1.0)
= 26,250 psi.
13) Total stress at midpoint of long side:
\left(S_{ t }\right)_{ M }=\left(S_{ m }\right)_{ M }+\left(S_{ b }\right)_{ M } =580+17,790
= 18,370 psi
Allowable stress = 1.5SE = 1.5(17,500)(1.0)
= 26,250 psi.
14) Total stress at the corner of short side:
\left(S_{ t }\right)_{ QN }=\left(S_{ m }\right)_{ N }+\left(S_{ b }\right)_{ QN }= 1240 + 12,950 = 14,190 psi
Allowable stress = 1.5SE = (1.5)(17,500)(0.80)
= 21,000 psi.
15) Total stress at midpoint of short side:
\left(S_{ t }\right)_{ N }=\left(S_{ m }\right)_{ N }+\left(S_{ b }\right)_{ N }= 1240 + 4990 = 6230 psi
Allowable stress = 1.5SE = (1.5)(17,500)(0.8)
= 21,000 psi.
All calculated stresses are less than the allowable stresses and are acceptable.