Question 21.P.7: A rectangular portal frame ABCD is rigidly fixed to foundati...
A rectangular portal frame ABCD is rigidly fixed to foundations A and D and is subjected to a compression load P as shown in Fig. P.21.7. If all the members have the same bending stiffness EI show that the buckling loads for modes which are symmetrical about the vertical centre line are given by the transcendental equation
\frac{\mu a}{2}=-\frac{1}{2}\left(\frac{a}{b}\right) \tan \left(\frac{\mu a}{2}\right)
where μ² = P/EI.

Learn more on how we answer questions.
The deflected shape of each of the members AB and BC is shown in Fig. S.21.7.
For the member AB and from Eq. (13.3) \frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}=\frac{M}{E I}
E I \frac{\mathrm{d}^{2} v_{1}}{\mathrm{~d} x_{1}^{2}}=-M_{B}
Then
E I \frac{\mathrm{d} v_{1}}{\mathrm{~d} x_{1}}=-M_{\mathrm{B}} x_{1}+C_{1}
When x_{1} = b, dv_{1}/dx_{1} = 0 so that C_{1} = M_{B}b and
E I \frac{\mathrm{d} v_{1}}{\mathrm{~d} x_{1}}=-M_{\mathrm{B}}\left(x_{1}-b\right) (i)
At B when x_{1} = 0 Eq. (i) gives
\frac{\mathrm{d} v_{1}}{\mathrm{~d} x_{1}}=\frac{M_{\mathrm{B}} b}{E I} (ii)
In the member BC Eq. (13.3) gives
E I \frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}=-P v+M_{\mathrm{B}}
or
\frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}+\mu^{2} v=\frac{M_{\mathrm{B}}}{E I} (iii)
where μ²=P/EI. The solution of Eq. (iii) is
v=C_{2} \cos \mu x+C_{3} \sin \mu x+\frac{M_{\mathrm{B}}}{P} (iv)
When x = 0, v = 0 so that C_{2} = -M_{B}/P. Also, when x = a/2, dv/dx = 0 which gives
C_{3}=C_{2} \tan \frac{\mu a}{2}=-\frac{M_{\mathrm{B}}}{P} \tan \frac{\mu a}{2}
Eq. (iv) then becomes
v=-\frac{M_{\mathrm{B}}}{P}\left(\cos \mu x+\tan \frac{\mu a}{2} \sin \mu x-1\right)
Then
\frac{\mathrm{d} v}{\mathrm{~d} x}=-\frac{M_{\mathrm{B}}}{P}\left(-\mu \sin \mu x+\mu \tan \frac{\mu a}{2} \cos \mu x\right)
At B when x = 0,
\frac{\mathrm{d} v}{\mathrm{~d} x}=-\frac{M_{\mathrm{B}}}{P} \mu \tan \frac{\mu a}{2} (v)
Since d_{v1}/d_{x1} = dv/dx at B then, from Eqs (ii) and (v)
\frac{b}{E I}=-\frac{\mu}{P} \tan \frac{\mu \mathrm{a}}{2}
Rearranging
\frac{\mu a}{2}=\frac{-1}{2}\left(\frac{a}{b}\right) \tan \frac{\mu a}{2}
