Question 9.1: A refrigerated space is maintained at −20°C, and cooling wat...

A refrigerated space is maintained at −20°C, and cooling water is available at 21°C. Refrigeration capacity is 120,000  kJ.h^−1. The evaporator and condenser are of sufficient size that a 5°C minimum-temperature difference for heat transfer can be realized in each. The refrigerant is 1,1,1,2-tetrafluoroethane (HFC-134a), for which data are given in Table 9.1 and Fig. F.2 (App. F).

Table 9.1: Properties of Saturated 1,1,1,2-Tetrafluoroethane (R134A)^†

Volume  m^{3}⋅kg{−1} Enthalpy  kJ⋅kg^{−1} Entropy  kJ⋅kg^{−1} ⋅K^{−1}
T(°C) P (bar) V^l V^v H^l H^v S^l Sv
−40 0.512 0.000705 0.36108 148.14 374 0.796 1.764
−35 0.661 0.000713 0.28402 154.44 377.17 0.822 1.758
−30 0.844 0.00072 0.22594 160.79 380.32 0.849 1.752
−25 1.064 0.000728 0.18162 167.19 383.45 0.875 1.746
−20 1.327 0.000736 0.14739 173.64 386.55 0.9 1.741
−18 1.446 0.00074 0.13592 176.23 387.79 0.91 1.74
−16 1.573 0.000743 0.12551 178.83 389.02 0.921 1.738
−14 1.708 0.000746 0.11605 181.44 390.24 0.931 1.736
−12 1.852 0.00075 0.10744 184.07 391.46 0.941 1.735
−10 2.006 0.000754 0.09959 186.7 392.66 0.951 1.733
−8 2.169 0.000757 0.092422 189.34 393.87 0.961 1.732
−6 2.343 0.000761 0.085867 191.99 395.06 0.971 1.731
−4 2.527 0.000765 0.079866 194.65 396.25 0.98 1.729
−2 2.722 0.000768 0.074362 197.32 397.43 0.99 1.728
0 2.928 0.000772 0.069309 200 398.6 1 1.727
2 3.146 0.000776 0.064663 202.69 399.77 1.01 1.726
4 3.377 0.00078 0.060385 205.4 400.92 1.02 1.725
6 3.62 0.000785 0.056443 208.11 402.06 1.029 1.724
8 3.876 0.000789 0.052804 210.84 403.2 1.039 1.723
10 4.146 0.000793 0.049442 213.58 404.32 1.049 1.722
12 4.43 0.000797 0.046332 216.33 405.43 1.058 1.721
14 4.729 0.000802 0.043451 219.09 406.53 1.068 1.72
16 5.043 0.000807 0.04078 221.87 407.61 1.077 1.72
18 5.372 0.000811 0.038301 224.66 408.69 1.087 1.719
20 5.717 0.000816 0.035997 227.47 409.75 1.096 1.718
22 6.079 0.000821 0.033854 230.29 410.79 1.106 1.717
24 6.458 0.000826 0.031858 233.12 411.82 1.115 1.717
26 6.854 0.000831 0.029998 235.97 412.84 1.125 1.716
28 7.269 0.000837 0.028263 238.84 413.84 1.134 1.715
30 7.702 0.000842 0.026642 241.72 414.82 1.144 1.715
35 8.87 0.000857 0.023033 249.01 417.19 1.167 1.713
40 10.166 0.000872 0.019966 256.41 419.43 1.191 1.711
45 11.599 0.000889 0.017344 263.94 421.52 1.214 1.709
50 13.179 0.000907 0.015089 271.62 423.44 1.238 1.7
55 14.915 0.000927 0.01314 279.47 425.15 1.261 1.705
60 16.818 0.00095 0.011444 287.5 426.63 1.285 1.702
65 18.898 0.000975 0.00996 295.76 427.82 1.309 1.699
70 21.168 0.001004 0.008653 304.28 428.65 1.333 1.696
75 23.641 0.001037 0.007491 313.13 429.03 1.358 1.691
80 26.332 0.001077 0.006448 322.39 428.81 1.384 1.685

(a) What is the value of ω for a Carnot refrigerator?

(b) Calculate ω and m ∙ for a vapor-compression cycle (Fig. 9.2) if the compressor efficiency is 0.80.

f2
9.2
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Allowing 5°C temperature differences, the evaporator temperature is −25°C = 248.15 K, and the condenser temperature is 26°C = 299.15 K. Thus, by Eq. (9.3) for a Carnot refrigerator,

\omega=\frac{T_C}{T_H-T_C}       (9.3)

\omega=\frac{248.15}{299.15-248.15}=4.87

(b) With HFC-134a as the refrigerant, enthalpies for states 2 and 4 of Fig. 9.2 are read directly from Table 9.1.

The entry at −25°C indicates that HFC-134a vaporizes in the evaporator at a pressure of 1.064 bar. Its properties as a saturated vapor at these conditions are:

H_2=383.45 \mathrm{~kJ} \cdot \mathrm{kg}^{-1}                         \quad S_2=1.746 \mathrm{~kJ} \cdot \mathrm{kg}^{-1} \cdot \mathrm{K}^{-1}

The entry at 26°C in Table 9.1 shows that HFC-134a condenses at 6.854 bar; its enthalpy as a saturated liquid at these conditions is:

H_4=235.97 \mathrm{~kJ} \cdot \mathrm{kg}^{-1}

If the compression step is reversible and adiabatic (isentropic) from saturated vapor at state 2 to superheated vapor at state 3′,

S_3^{\prime}=S_2=1.746 \mathrm{~kJ} \cdot \mathrm{kg}^{-1} \cdot \mathrm{K}^{-1}

This entropy value and the condenser pressure of 6.854 bar are sufficient to specify the thermodynamic state at point 3′. One could find the other properties at this state using Fig. F.2, following a curve of constant entropy from the saturation curve to the condenser pressure. However, more precise results can be obtained using an electronic resource such as the NIST WebBook. Varying the temperature at a fixed pressure of 6.854 bar shows that the entropy is 1.746  kJ⋅kg^{−1}⋅K^{−1} at T = 308.1  K . The corresponding enthalpy is:

H_3^{\prime}=421.97 \mathrm{~kJ} \cdot \mathrm{kg}^{-1}

and the enthalpy change is:

(\Delta H)_S=H_3^{\prime}-H_2=421.97-383.45=38.52 \mathrm{~kJ} \cdot \mathrm{kg}^{-1}

By Eq. (7.17) for a compressor efficiency of 0.80, the actual enthalpy change for step 2 → 3 is:

\eta \equiv \frac{(\Delta H)_S}{\Delta H}         (7.17)

H_3-H_2=\frac{(\Delta H)_S}{\eta}=\frac{38.52}{0.80}=48.15  \mathrm{~kJ} \cdot \mathrm{kg}^{-1}

Because the throttling process of step 1 → 4 is isenthalpic, H_1 = H_4. The coefficient of performance as given by Eq. (9.4) therefore becomes:

\omega=\frac{H_2-H_1}{H_3-H_2}          (9.4)

\omega=\frac{H_2-H_4}{H_3-H_2}=\frac{383.45-235.97}{48.15}=3.06

and the HFC-134a circulation rate as given by Eq. (9.5) is:

\dot{m}=\frac{\dot{Q}_C}{H_2-H_1}            (9.5)

\dot{m}=\frac{\dot{Q}_C}{H_2-H_4}=\frac{120,000}{383.45-235.97}=814 \mathrm{~kg} \cdot \mathrm{h}^{-1}

Related Answered Questions