Question 6.8: A relativistic particle P, initially at rest at the origin i...

A relativistic particle P, initially at rest at the origin in frame  \psi,  is moving along a straight line under a constant force  \mathbf{F}_0.  Determine the relativistic speed and the distance traveled by P as functions of time.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The equation of motion for the relativistic particle is given by (5.34) in which  \mathbf{F}(P, t)=\mathbf{F}_0  is a constant force and (6.9) is to be used. Hence, separation of the variables and integration of  \mathbf{F}_0 d t=d(m \mathbf{v})=d\left(\gamma m_0 \mathbf{v}\right),  with the initial values  \mathbf{v}(P, 0)=\mathbf{0}  and  \gamma=1,  yields  m \mathbf{v}=\mathbf{F}_0 t.  Thus, recalling (6.9) and noting that  \mathbf{v}=v \mathbf{t} \text { and } \mathbf{F}_0=F_0 \mathbf{t}  are parallel vectors, we have only one nontrivial component equation:  m_0 v /\left(1  –  v^2 / c^2\right)^{1 / 2}=F_0 t.  This scalar equation yields the rectilinear, relativistic speed

\mathbf{F}(P, t)=\frac{d \mathbf{p}(P, t)}{d t}=\frac{d}{d t}[m(P) \mathbf{v}(P, t)]                    (5.34)

m=\gamma m_0=\frac{m_0}{\sqrt{1  –  \beta^2}} \quad \text { with } \quad \beta \equiv \frac{\dot{s}}{c} \text {. }             (6.9)

v(P, t)=\frac{c k t}{\sqrt{1  +  (k t)^2}} \quad \text { with } \quad k \equiv \frac{F_0}{m_0 c} \text {. }                 (6.25a)

Introducing  v=\dot{s}  into (6.25a) , separating the variables, and integrating  d s=v d t  with the initial value  s(0)=0,  we obtain the rectilinear distance traveled by P:

s(P, t)=\frac{c}{k}\left(\sqrt{1  +  (k t)^2}  –  1\right) .             (6.25b)

Notice in (6.25a) that  v / c<1  for all  t, and  v / c \rightarrow 1 \text { as } t \rightarrow \infty;  that is, under a constant force, the relativistic particle speed cannot exceed the speed of light c. This  result is quite different from the corresponding speed  v=F_0 t / m_0  described by (6.22) for a Newtonian particle of mass  m=m_0  initially at rest and subject to a constant force  F_0;  in this case  v \rightarrow \infty  with t. If m_0 c  is large compared with  F_0 t  so that  k t \ll 1,  then (6.25a) and (6.25b) reduce approximately to

\mathbf{v}(P, t)=\frac{\mathbf{F}_0}{m} t  +  \mathbf{v}_0           (6.22)

v(P, t)=c k t=\frac{F_0}{m_0} t, \quad s(P, t)=\frac{1}{2} c k t^2=\frac{F_0}{2 m_0} t^2            (6.25c)

The se are the Newtonian formulas described by (6.22) and (6.23) for the  corresponding rectilinear motion of a particle of mass m_0  initially at rest at the origin and acted upon by a constant force  F_0.  In the present relativistic approximation , however, these results are valid for only a sufficiently small  time for which  v / c=k t \ll 1.

\mathbf{x}(P, t)=\frac{\mathbf{F}_0}{2 m} t^2  +  \mathbf{v}_0 t  +  \mathbf{x}_0                    (6.23)

Related Answered Questions