Question 11.10: A rigid body shown in Fig. 11.4 is driven by a torque μ(t) a...

A rigid body shown in Fig. 11.4 is driven by a torque μ(t) about a fixed, principal body axis k in a smooth bearing at H . (i) Apply (11.73)  to derive the equationof motionfor the body.(ii) Repeatthe derivation from (11.38). Show that the result has the familiar form of the equation of motion of a driven pendulum. (iii) Apply Euler’s law to obtain the equation of motion.

\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_r}\right)  –  \frac{\partial T}{\partial q_r}=Q_r, \quad r=1,2, \ldots, n                        (11.73)

\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_k}\right)  –  \frac{\partial L}{\partial q_k}=Q_k^N                        (11.38)

11.4
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Solution of (i). The system is holonomic with one degree of freedom described by  q_1=\psi; hence, (11.73) yields

\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{\psi}}\right)  –  \frac{\partial T}{\partial \psi}=Q_\psi                               (11.74a)

With the total kinetic energy of the body  T=\frac{1}{2} I \dot{\psi}^2,  where I is the principal moment of inertia about the body axis at H, (11.74a) becomes

I \ddot{\psi}=Q_\psi.                (11.74b)

We next determine the generalized force  Q_\psi .  The bearing  reaction force R is workless, and the total external torque  \mathbf{M}_H  about H is the sum of the gravitational torque   -W \ell \sin \psi \mathbf{k}  and the applied driving torque  \boldsymbol{\mu}=\mu \mathbf{k}.  The virtual work  \delta \mathscr{W}  done by the total torque in the virtual displacement  \delta \psi \equiv \delta \psi \mathbf{k}  is thus given by

\delta \mathscr{W}=\mathbf{M}_H \cdot \delta \psi=(-W \ell \sin \psi  +  \mu) \delta \psi \equiv Q_\psi \delta \psi.                             (11.74c)

Hence,  Q_\psi=-W \ell \sin \psi  +  \mu,  and (11.74b) yields the equation of motion:

I \ddot{\psi}  +  m g \ell \sin \psi=\mu(t).                         (11.74d)

Solution of (ii). Application of the Lagrange equations (11.38) yields

\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\psi}}\right)  –  \frac{\partial L}{\partial \psi}=Q_\psi^N .                             (11.74e)

Again, the workless constraint force R need not be considered, and the gravitational force is conservative with total potential energy   V=m g \ell(1  –  \cos \psi).  Therefore, the Lagrangian is

L=T-V=\frac{1}{2} I \dot{\psi}^2  –  m g \ell(1  –  \cos \psi) .                         (11.74f)

The virtual work done by the nonconservative generalized force is   \delta \mathscr{W}_N=\boldsymbol{\mu}·\delta \psi=\mu \delta \psi=Q_\psi^N \delta \psi.  Hence,  Q_\psi^N=\mu,  and (11.74e) leads to (11.74d) .

With  I=m R^2  in terms of the radius of gyration R, (l1.74d) may be written in the form of the equation of motion of a driven pendulum for which  p^2 \equiv g \ell / R^2  and  \hat{\mu}(t) \equiv \mu(t) / I;  namely,

\ddot{\psi}+p^2 \sin \psi=\hat{\mu}(t).                 (11.74g)

Solution of (iii). Euler’s law for the rotation about a fixed principal  axis at H requires  \mathbf{M}_H=I_H \dot{\omega},  wherein   \mathbf{M}_H=(\mu  –  W \ell \sin \psi) \mathbf{k}  and  I_H \dot{\omega}=I \ddot{\psi} \mathbf{k}.  This yields the equation of motion   I \psi=\mu  –  W \ell \sin \psi,  which is the same as (11.74d) .

Related Answered Questions

Question: 11.4

Verified Answer:

The kinetic energy of P is   T=\frac{1}{2} ...
Question: 11.1

Verified Answer:

The three independent generalized coordinates and ...