Question 26.3.45: A rod having cross-sectional area 100 × 10^–6 m² is subjecte...
A rod having cross-sectional area 100 × 10^{-6} m^2 is subjected to a tensile load. Based on the Tresca failure criterion, if the uniaxial yield stress of the material is 200 MPa, the failure load is
(a) 10 kN (b) 20 kN (c) 100 kN (d) 200 kN.
Learn more on how we answer questions.
(b)
EXPLANATION
A=100 \times 10^{-6} m ^2
Let P = tensile load at failure ∴ For one-dimensional stress system, we have stresses as \left(\frac{P}{A}, 0,0\right)
Tensile stress due to load P, \sigma_1=\frac{P}{A}
This stress is in one-direction only i.e., (σ, 0, 0)
Max. shear stress due to stress system \left(\sigma_1, 0,0\right)=\frac{1}{2}\left(\sigma_1-0\right)=\frac{\sigma_1}{2}
Uniaxial yield stress, \sigma_t^*=200 MPa =200 \times 10^6 N / m ^2 .
∴ For uniaxial yield stress, we have stress system as \left(\sigma_t^*, 0,0\right)
Max. shear stress due to uniaxial yield stress =\frac{1}{2}\left(\sigma_t^*-0\right)=\frac{\sigma_t^*}{2}
According to Tresca failure criterion,
Max. shear stress developed = Max. shear due to yield stress
i.e., \frac{\sigma_1}{2}=\frac{\sigma_t^*}{2} \quad \text { or } \quad \sigma_1=\sigma_t^*
or \frac{P}{A}=200 \times 10^6 N / m ^2 \quad\left(\because \sigma_t{ }^*=200 \times 10^6 N / m ^2 \quad \text { and } \quad \sigma_1=\frac{P}{A}\right)
or P=200 \times 10^6 \times A \\ =\left(200 \times 10^6\right) \times\left(100 \times 10^{-6}\right)=20000=\pmb{20 kN.}