Question 10.13: A satellite is in torque-free motion (MGnet = 0). A nongimba...

A satellite is in torque-free motion \left( M _{G_{\text {net }}}= 0 \right). A nongimbaled gyro (momentum wheel) is aligned with the vehicle’s x axis and is spinning at the rate \omega_{s_{0}}. The spacecraft angular velocity is \omega=\omega_{x} \hat{ i }. If the spin of the gyro is increased at the rate \dot{\omega}_{s}, find the angular acceleration of the spacecraft.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Using Figure 10.26 as a guide, we set φ = 0 and φ = 90° to align the spin axis with the x axis. Since there is no gimbaling, \dot{\theta}=\dot{\phi}=0. Equations 10.152 then yield

A \dot{\omega}_{x}+C^{(w)} \omega_{s} \dot{\theta} \cos \phi \cos \theta-C^{(w)} \omega_{s} \dot{\phi} \sin \phi \sin \theta+C^{(w)} \dot{\omega}_{s} \cos \phi \sin \theta +\left(C^{(w)} \omega_{s} \cos \theta+C \omega_{z}\right) \omega_{y}-\left(C^{(w)} \omega_{s} \sin \phi \sin \theta+B \omega_{y}\right) \omega_{z}=M_{G_{x}}                    (10.152a)

B \dot{\omega}_{y}+C^{(w)} \omega_{s} \dot{\theta} \sin \phi \cos \theta+C^{(w)} \omega_{s} \dot{\phi} \cos \phi \sin \theta+C^{(w)} \dot{\omega}_{s} \sin \phi \sin \theta -\left(C^{(w)} \omega_{s} \cos \theta+C \omega_{z}\right) \omega_{x}+\left(C^{(w)} \omega_{s} \cos \phi \sin \theta+A \omega_{x}\right) \omega_{z}=M_{G_{y}}                    (10.152b)

C \dot{\omega}_{z}-C^{(w)} \omega_{s} \dot{\theta} \sin \theta+C^{(w)} \dot{\omega}_{s} \cos \theta -\left(C^{(w)} \omega_{s} \cos \phi \sin \theta+A \omega_{x}\right) \omega_{y}+\left(C^{(w)} \omega_{s} \sin \phi \sin \theta+B \omega_{y}\right) \omega_{x}=M_{G_{z}}                    (10.152c)

A \dot{\omega}_{x}+C^{(w)} \dot{\omega}_{s}=0
B \dot{\omega}_{y}=0
C \dot{\omega}_{z}=0

Clearly, the angular velocities around the y and z axes remain zero, whereas

\dot{\omega}_{x}=-\frac{C^{(w)}}{A} \dot{\omega}_{s}

Thus, a change in the vehicle’s roll rate around the x axis can be initiated by accelerating the momentum wheel in the opposite direction. See Example 10.9.

10.26

Related Answered Questions