Question 10.6: A satellite is spinning about the z axis of its principal bo...

A satellite is spinning about the z axis of its principal body frame at 2π radians per second. The principal moments of inertia about its center of mass are

\begin{matrix} A = 300  kg · m^{2}& B = 400  kg · m^{2}& C = 500  kg · m^{2} \end{matrix}                                                  (a)

For the nutation damper, the following properties are given

\begin{matrix}R = 1  m& µ = 0.01& m = 10  kg& k = 10 000  N/m &c = 150  N·s/m\end{matrix}                (b)

Use the Routh–Hurwitz stability criteria to assess the stability of the satellite as a major-axis spinner, a minor-axis spinner, and an intermediate-axis spinner.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The data in (a) are for a major-axis spinner. Substituting into Equations 10.92 and 10.93, we find

\begin{matrix}a_{4}=(1-μ)mAB \\ a_{3}=cA[B+(1-μ)mR^2 ] \\a_{2}=k[B+(1-μ)mR^2]A+(1-μ)m[(A-C)(B-C)-(1-μ)AmR^2]ω^2_0 \quad \quad (10.92) \\a_{1}=c{[A-C-(1-μ)mR^2](B-C)}ω^2_0 \\a_{0}=k\left\{[A-C-(1-μ)mR^2](B-C)\right\} ω^2_0 +[(B-C)(1-μ)^2]m^{2}R^{2}ω^2_0   \end{matrix}

 

\begin{matrix}r_{1}=a_{4} & r_{2}=a_{3} &r_{3}=a_{2}-\frac{a_{4}a_{1}}{a_{3}}&r_{4}=a_{1}-\frac{a_{3}a_{0}}{a_{3}a_{2}-a_{4}a_{1}}&r_{5}=a_{0} \end{matrix}                           (10.93)

r_{1} = +1.188 × 10^{6}  kg^{3}m^{4}
r_{2} = +18.44 × 10^{6}  kg^{3}m^{4}/s
r_{3} = +1.228 ×10^{6}  kg^{3}m^{4}/s^{2}                                           (c)
r_{4} = +92 820  kg^{3}m^{4}/s^{3}
r_{5} = +8.271 ×10^{9}  kg^{3}m^{4}/s^{4}
Since the rs are all positive, spin about the major axis is asymptotically stable. As we know from Section 10.3, without the damper the motion is neutrally stable. For spin about the minor axis,

\begin{matrix}A = 500  kg · m^{2}& B = 400  kg · m^{2}& C = 300  kg · m^{2}\end{matrix}     (d)

For these moment of inertia values, we obtain
r_{1} = +1.980 × 10^{6}  kg^{3}m^{4}
r_{2} = +30.74 ×10^{6}  kg^{3}m^{4}/s
r_{3} = +2.048 ×10^{6}  kg^{3}m^{4}/s^{2}                                         (e)
r_{4} = −304 490  kg^{3}m^{4}/s^{3}
r_{5} = +7.520 ×10^{9}  kg^{3}m^{4}/s^{4}
Since the rs are not all of the same sign, spin about the minor axis is not asymptotically stable. Recall that for the rigid satellite, such a motion was neutrally stable.
Finally, for spin about the intermediate axis,

\begin{matrix}A = 300  kg·m^{2}\quad B = 500  kg·m^{2} \quad C = 400  kg·m^{2}\end{matrix}               (f)

We know this motion is unstable, even without the nutation damper, but doing the Routh–Hurwitz stability check anyway, we get
r_{1} = +1.485 × 10^{6}  kg^{3}m^{4}
r_{2} = +22.94 ×10^{6}  kg^{3}m^{4}/s
r_{3} = +1.529 ×10^{9}  kg^{3}m^{4}/s^{2}
r_{4} = −192 800  kg^{3}m^{4}/s^{3}
r_{5} = −4.323 ×10^{9}  kg^{3}m^{4}/s^{4}
The motion, as we expected, is not stable.

Related Answered Questions