Question 10.6: A satellite is spinning about the z of its principal body fr...

A satellite is spinning about the z of its principal body frame at 2π radians per second. The principal moments of inertia about its center of mass are

A = 300 kg · m²             B = 400 kg · m²             C = 500 kg · m²             (a)

For the nutation damper, the following properties are given

R = 1 m          μ = 0.01          m = 10 kg          k = 10,000 N/m          c = 150 N-s/m          (b)

Use the Routh-Hurwitz stability criteria to assess the stability of the satellite as a major-axis spinner, a minor-axis spinner, and an intermediate-axis spinner.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The data in (a) are for a major axis spinner. Substituting into Equations 10.92 and 10.93, we find

\begin{aligned}&a_{4}=(1-\mu) m A B \\&a_{3}=c A\left[B+(1-\mu) m R^{2}\right] \\&a_{2}=k\left[B+(1-\mu) m R^{2}\right] A+(1-\mu) m\left[(A-C)(B-C)-(1-\mu) A m R^{2}\right] \omega_{o}^{2} \\&a_{1}=c\left\{\left[A-C-(1-\mu) m R^{2}\right](B-C)\right\} \omega_{o}^{2} \\&a_{0}=k\left\{\left[A-C-(1-\mu) m R^{2}\right](B-C)\right\} \omega_{o}^{2}+\left[(B-C)(1-\mu)^{2}\right] m^{2} R^{2} \omega_{o}^{4}\end{aligned}            (10.92)

r_{1}=a_{4} \quad r_{2}=a_{3} \quad r_{3}=a_{2}-\frac{a_{4} a_{1}}{a_{3}} \quad r_{4}=a_{1}-\frac{a_{3} a_{0}}{a_{3} a_{2}-a_{4} a_{1}} \quad r_{5}=a_{0}            (10.93)

\begin{aligned}&r_{1}=+1.188 \times 10^{6} kg ^{3} m ^{4} \\&r_{2}=+18.44 \times 10^{6} kg ^{3} m ^{4} / s \\&r_{3}=+1.228 \times 10^{9} kg ^{3} m ^{4} / s ^{2} \\&r_{4}=+92,820 kg ^{3} m ^{4} / s ^{3} \\&r_{5}=+8.271 \times 10^{9} kg ^{3} m ^{4} / s ^{4}\end{aligned}              (c)

Since every r is positive, spin about the major axis is asymptotically stable. As we know from Section 10.3, without the damper the motion is neutrally stable.
For spin about the minor axis,

A = 500 kg · m²         B = 400 kg · m²        C = 300 kg · m²           (d)

For these moment of inertia values, we obtain

\begin{aligned}&r_{1}=+1.980 \times 10^{6} kg ^{3} m ^{4} \\&r_{2}=+30.74 \times 10^{6} kg ^{3} m ^{4} / s \\&r_{3}=+2.048 \times 10^{9} kg ^{3} m ^{4} / s ^{2} \\&r_{4}=-304,490 kg ^{3} m ^{4} / s ^{3} \\&r_{5}=+7.520 \times 10^{9} kg ^{3} m ^{4} / s ^{4}\end{aligned}             (e)

Since the rs are not all of the same sign, spin about the minor axis is not asymptotically stable. Recall that for the rigid satellite, such a motion was neutrally stable.
Finally, for spin about the intermediate axis,

A = 300 kg · m²         B = 500 kg · m²        C = 400 kg · m²           (f)

We know this motion is unstable, even without the nutation damper, but doing the Routh-Hurwitz stability check anyway, we get

r_{1}=+1.485 \times 10^{6} kg ^{3} m ^{4}
r_{2}=+22.94 \times 10^{6} kg ^{3} m ^{4} / s
r_{3}=+1.529 \times 10^{9} kg ^{3} m ^{4} / s ^{2}
r_{4}=-192,800 kg ^{3} m ^{4} / s ^{3}
r_{5}=-4.323 \times 10^{9} kg ^{3} m ^{4} / s ^{4}

The motion, as we expected, is not stable.

Related Answered Questions