Question 4.6: A SDOF system has a mass of 100 kg, stiffness of 100 kN/m an...

A SDOF system has a mass of 100 kg, stiffness of 100 kN/m and a damping of 10 per cent. It is subjected to a force as shown in Figure 4.9. Period of the forcing function is 0.12 sec and its duration is also 0.12 sec. Determine the Fourier constants of force and displacement up to 20 terms. Also, plot the steady state response.

Annotation 2022-10-01 213859
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Natural frequency of SDOF = 31.623 rad/sec
Forcing frequency = 2Ï€/0.12 = 52.36 rad/sec

A computer code was written in FORTRAN using Equations (4.2) and (4.7), and the results are shown in Table 4.1.

 a_{n}=\frac{2}{T_{p}} \int_{0}^{T_{p}}p(t)\cos \frac{2\pi n}{T_{p}} t          n = 1, 2, 3….             (4.2)

 x(t)=\frac{1}{k} (a_{0}+\sum\limits_{n=1}^{\infty } \frac{1}{(1-\beta ^{2}_{n} )^{2}+(2\xi \gamma _{n})^{2}}

{\left[a_{n}2\xi \beta _{n}+b_{n}(1-\beta _{n}^{2})\right]\sin n \bar{\omega }_{1}t

+\left[a_{n}(1-\beta _{n}^{2})-b_{n}2\xi \beta _{n}\right]\cos n \bar{\omega }_{1} t }               (4.7)

Fourier force coefficient A_{0} = 30000.000

Fourier displacement coefficient X_{0} = 0.300

The plot of the Fourier periodic force due to first 20 terms is shown in Figure 4.10 and that of the response in Figure 4.11.

Fourier Constants for Force and Displacement Terms
Fourier Force
Coeff.
Fourier Displacement
Coeff.
N Frequency Frequency Ratio A(N)
COS term
B(N) SINE term X1(N)
COS term
X2(N) SINE term
1 52.36 1.656 −2.13E − 03 4.86E + 04 −2.70E − 01 −5.12E − 02
2 104.72 3.312 −2.43E + 04 −2.13E − 03 −1.61E − 03 2.43E − 02
3 157.08 4.967 7.09E − 04 −5.40E + 03 2.28E − 03 9.56E − 05
4 209.44 6.623 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
5 261.799 8.279 −4.25E − 04 1.95E + 03 −2.88E − 04 −7.06E − 06
6 314.159 9.935 −2.70E + 03 −7.09E − 04 −5.62E − 06 2.76E − 04
7 366.519 11.59 3.04E − 04 −9.93E + 02 7.44E − 05 1.29E − 06
8 418.879 13.246 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
9 471.239 14.902 −2.36E − 04 6.00E + 02 −2.72E − 05 −3.66E − 07
10 523.599 16.558 −9.73E + 02 −4.25E − 04 −4.32E − 07 3.56E − 05
11 575.959 18.213 1.93E − 04 −4.02E + 02 1.22E − 05 1.34E − 07
12 628.319 19.869 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
13 680.678 21.525 −1.64E − 04 2.88E + 02 −6.22E − 06 −5.80E − 08
14 733.038 23.181 −4.96E + 02 −3.04E − 04 −8.00E − 08 9.25E − 06
15 785.398 24.836 1.42E − 04 −2.16E + 02 3.51E − 06 2.83E − 08
16 837.758 26.492 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
17 890.118 28.148 −1.25E − 04 1.68E + 02 −2.13E − 06 −1.51E − 08
18 942.478 29.804 −3.00E + 02 −2.36E − 04 −2.27E − 08 3.38E−06
19 994.838 31.46 1.12E − 04 −1.35E + 02 1.36E − 06 8.67E − 09
20 1047.198 33.115 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
Annotation 2022-10-01 215459
Annotation 2022-10-01 215526

Related Answered Questions

Question: 4.8

Verified Answer:

The MATLAB code for ramp function is written in th...
Question: 4.7

Verified Answer:

The MATLAB code is written in the following parts:...
Question: 4.3

Verified Answer:

The Fourier pair is given by Equation (4.9): [late...
Question: 4.2

Verified Answer:

The steady state response of an undamped SDOF subj...
Question: 4.1

Verified Answer:

The square pulse is having a period of T_{p...