Question 12.11: A shaft of diameter d, bent in the form of a semi-circle of ...

A shaft of diameter d, bent in the form of a semi-circle of radius R is built-in at A and loaded at B by a force P acting perpendicular to the plane of the shaft as shown in Figure 12.21. Find the value of angle \phi for which the principal stress \sigma_1  will be maximum.

12.21
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let us draw the free-body diagram of the segment BC with angle \phi(0 \leq \phi \leq \pi) as shown in Figure 12.21, of the bent shaft in Figure 12.22.

From the foregoing free-body diagram shown in Figure 12.22, we observe at point C defined by the angle \phi(0 \leq \phi \leq \pi / 2) that the force and moment acting are as follows:
Force P vertically upward
Bending moment \left(M_{ b }\right)_{ C } about OC and
Torsional moment \left(M_{ t }\right)_{ C } about tangent EF drawn at C
Observe that EF and OC are perpendicular to each other at point C. Therefore,

\left(M_{ b }\right)_{ C }=P \cdot BD =P R \sin \phi \quad(\text { as from } \Delta OBD , \quad OB =R \quad \text { and } \quad BD \perp OD )

and          \left(M_{ t }\right)_{ C }=P \cdot CD =P( OC – OD )=P R(1-\cos \phi) \quad(\text { as } OD =R \cos \phi)

So the principal stress \sigma_1 at C is defined as:

\sigma_1=\frac{\sigma_n}{2}+\sqrt{\left(\frac{\sigma_n}{2}\right)^2+\tau^2}              (1)

where \sigma_n is the normal stress caused due to \left(M_{ b }\right)_{ C } is

\sigma_n=\frac{32\left(M_{ b }\right)_{ C }}{\pi d^3}

and τ is the shear stress caused due to \left(M_{ t }\right)_{ C }

\sigma_n=\frac{16\left(M_{ t }\right)_{ C }}{\pi d^3}

Putting these values in Eq. (1), we get:

\sigma_1=\left\lgroup \frac{16}{\pi d^3} \right\rgroup\left[\left(M_{ b }\right)_{ C }+\sqrt{\left(M_{ b }\right)_{ C }^2+\left(M_{ t }\right)_{ C }^2}\right]

Putting the expressions of \left(M_{ b }\right)_{ C } \text { and }\left(M_{ t }\right)_{ C } , we get:

\sigma_1=\left\lgroup \frac{16 P R}{\pi d^3} \right\rgroup \left[\sin \phi+\sqrt{\sin ^2 \phi+(1-\cos \phi)^2}\right]

=\left\lgroup \frac{16 P R}{\pi d^3} \right\rgroup [\sin \phi+\sqrt{2-2 \cos \phi}]

=\left\lgroup \frac{16 P R}{\pi d^3}\right\rgroup [\sin \phi+2 \sin (\phi / 2)]

Clearly \sigma_1 will be maximum when \sin \phi+2 \sin (\phi / 2) becomes maximum, that is, when

\frac{ d }{ d \phi}\left\lgroup \sin \phi+2 \sin \frac{\phi}{2} \right\rgroup =0

or            \cos \phi+\cos \frac{\phi}{2}=0

or            \cos \phi=-\cos \frac{\phi}{2}=\cos \left\lgroup \pi-\frac{\phi}{2} \right\rgroup

Therefore,

3 \phi=2 \pi \Rightarrow \phi=\frac{2 \pi}{3}=120^{\circ}

We check that the following differential is negative.

\left[\frac{ d ^2}{ d \phi^2}\left\lgroup \sin \phi+2 \sin \frac{\phi}{2} \right\rgroup\right]_{\phi=2 \pi / 3}

Hence \sin \phi+2 \sin (\phi / 2) is maximum when \phi=120^{\circ} . Thus, \sigma_1 the principal stress at C becomes maximum when \phi=120^{\circ} .

12.22

Related Answered Questions

Question: 12.12

Verified Answer:

Let us draw the free-body diagram of the segment B...