Question 7.14: A simple beam AB is subjected to couples Mo and 2Mo acting a...

A simple beam AB is subjected to couples M_o \text { and } 2 M_o acting as shown in Figure 7.25. Calculate the angles of rotation \theta_A \text { and } \theta_B and maximum deflection, \delta_{\max }  . Assume EI to be constant.

7.25
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We show the free-body diagram of the beam as shown in Figure 7.26 to determine the support reactions.

Clearly,

\sum F_y=0 \Rightarrow R_{ A }=R_{ B } \quad \text { and } \quad \sum M_{ A }=0 \Rightarrow R_{ A }=R_{ B }=\frac{3 M_{ o }}{L}

Therefore, bending moment expression at any section at a distance x from end A of the beam is given by

M_x=R_{ A } x-M_{ o }\left\langle x-\frac{L}{3}\right\rangle^0-2 M_{ o }\left\langle x-\frac{2 L}{3}\right\rangle^0

Putting expression of R_{ A } , we get

M_x=\left\lgroup \frac{3 M_{ o }}{L}\right\rgroup x-M_{ o }\left\langle x-\frac{L}{3}\right\rangle^0-2 M_{ o }\left\langle x-\frac{2 L}{3}\right\rangle^0

From the flexure equation, by substituting the expression of M_x , we get

(E I) \frac{ d ^2 y}{ d x^2}=-M_x=\left\lgroup -\frac{3 M_{ o }}{L} \right\rgroup x+M_{ o }\left\langle x-\frac{L}{3}\right\rangle^0+2 M_{ o }\left\langle x-\frac{2 L}{3}\right\rangle^0

Integrating successively,

(E I) \frac{ d y}{ d x}=\left\lgroup -\frac{3 M_{ o }}{2 L} \right\rgroup x^2+M_{ o }\left\langle x-\frac{L}{3}\right\rangle+2 M_{ o }\left\langle x-\frac{2 L}{3}\right\rangle+C_1            (1)

and        (E I) y=\left\lgroup -\frac{M_{ o }}{2 L} \right\rgroup x^3+\frac{M_{ o }}{2}\left\langle x-\frac{L}{3}\right\rangle^2+M_{ o }\left\langle x-\frac{2 L}{3}\right\rangle^2+C_1 x+C_2              (2)

The boundary conditions are: (a) at x = 0, y = 0 and (b) at x = L, y = 0. Putting these in Eq. (2) and noting Macaulay’s function values, we get

From condition (a), C_2=0 and

From condition (b),

-\frac{M_{ o } L^2}{2}+\frac{M_{ o }}{2}\left\lgroup\frac{2 L}{3} \right\rgroup^2+M_{ o }\left\lgroup\frac{L}{3} \right\rgroup^2+C_1 L=0

\begin{aligned} & \Rightarrow C_1=\frac{M_{ o } L}{2}-\frac{2 M_{ o } L}{9}-\frac{M_{ o } L}{9}=\frac{9-4-2}{18} M_{ o } L \\ & \Rightarrow C_1=\frac{1}{6} M_{ o } L \end{aligned}

Thus, Eqs. (1) and (2) now become

(E I) \frac{ d y}{ d x}=\left\lgroup -\frac{3 M_{ o }}{2 L} \right\rgroup x^2+M_{ o }\left\langle x-\frac{L}{3}\right\rangle+2 M_{ o }\left\langle x-\frac{2 L}{3}\right\rangle+\frac{1}{6} M_{ o } L              (3)

and      (E I) y=\left\lgroup -\frac{M_{ o }}{2 L} \right\rgroup x^3+\frac{M_{ o }}{2}\left\langle x-\frac{L}{3}\right\rangle^2+M_{ o }\left\langle x-\frac{2 L}{3}\right\rangle^2+\left(\frac{1}{6} M_{ o } L\right) x            (4)

Now, \theta_{ A } \text { and } \theta_{ B } can be obtained by putting x = 0 and x = L in Eq. (3) above, respectively, as

\theta_{ A } \approx \tan \theta_{ A }=\left.\left\lgroup\frac{1}{E I} \right\rgroup \frac{ d y}{ d x}\right|_{x=0}=\frac{1}{6} \frac{M_{ o } L}{E I}

or          \theta_{ A }=\frac{1}{6} \frac{M_{ o } L}{E I}

and

\theta_{ B } \approx \tan \theta_{ B }=\left.\left(\frac{1}{E I}\right) \frac{ d y}{ d x}\right|_{x=L}=\frac{L}{E I}\left[-\frac{3 M_{ o } L}{2}+\frac{2 M_{ o } L}{3}+\frac{2 M_{ o } L}{3}+\frac{1}{6} M_{ o } L\right]

or        \theta_{ B }=0

To obtain \delta_{\max } let us assume deflection occurs within [0, L/3], that is, 0 ≤ x ≤ L/3. For \delta_{\max } we must have dy/dx = 0. Therefore assuming 0 ≤ x ≤ L/3 and setting dy/dx = 0, we get from Eq. (4)

\begin{aligned} & -\frac{3 M_{ o }}{2 L} x^2+M_{ o }\left\lgroup x-\frac{L}{3} \right\rgroup +\frac{M_{ o } L}{6}=0 \\ & \Rightarrow \quad\left\lgroup \frac{3}{2 L} \right\rgroup x^2-M_{ o } x+\frac{L}{6}= \\ & \Rightarrow 9 x^2-6 L x+L^2=0 \Rightarrow x=\frac{L}{3} \end{aligned}

which lies within the domain of 0 ≤ x ≤ L/3.

Thus, putting x = L/3 in Eq. (4), we obtain:

(E I) \delta_{\max }=-\frac{M_{ o }}{2 L}\left\lgroup \frac{L^3}{27} \right\rgroup+\frac{M_{ o } L}{6} \cdot \frac{L}{3}=\frac{M_{ o } L^2}{18}-\frac{M_{ o } L^2}{54}=\frac{M_{ o } L}{27}

Therefore,

\delta_{\max }=\frac{M_{ o } L}{27 E I}(\downarrow)

7.26

Related Answered Questions

Question: 7.18

Verified Answer:

From the previous problem, we note that the flexur...
Question: 7.17

Verified Answer:

We note from the given beam loading that it is a s...
Question: 7.16

Verified Answer:

Let us draw the free-body diagram of the beam as s...
Question: 7.15

Verified Answer:

Let us first draw the free-body diagram of the bea...
Question: 7.11

Verified Answer:

We draw the free-body diagram of the beam as shown...
Question: 7.8

Verified Answer:

In the problem, the load P is applied such that sy...