Question 9.15: A simple beam AB of a length L supports a uniform load of an...

A simple beam AB of a length L supports a uniform load of an intensity q (Fig. 9-33). (a) Evaluate the strain energy of the beam from the bending moment in the beam. (b) Evaluate the strain energy of the beam from the equation of the deflection curve. Note: The beam has constant flexural rigidity EI.

9.15
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Use a four-step problem-solving approach. Combine steps as needed for an efficient solution.
Part (a): Strain energy from the bending moment.
1, 2. Conceptualize, Categorize: The reaction of the beam at support A is qL/2, so the expression for the bending moment in the beam is

M=\frac{q L x}{2}-\frac{q x^{2}}{2}=\frac{q}{2}\left(L x-x^{2}\right)             (a)

3. Analyze: The strain energy of the beam [from Eq. (9-95a)] is

U=\int_{0}^{L} \frac{M^{2} d x}{2 E I}=\frac{1}{2 E I} \int_{0}^{L}\left[\frac{q}{2}\left(L x-x^{2}\right)\right]^{2} d x=\frac{q^{2}}{8 E I} \int_{0}^{L}\left(L^{2} x^{2}-2 L x^{2}+x^{4}\right) d x            (b)

which leads to

U=\frac{q^{2} L^{5}}{240 E I}              (9-98)

Note that the load q appears to the second power, which is consistent with the fact that strain energy is always positive. Furthermore, Eq. (9-98) shows that strain energy is not a linear function of the loads, even though the beam itself behaves in a linearly elastic manner.

Part (b): Strain energy from the deflection curve.

1, 2. Conceptualize, Categorize: The equation of the deflection curve for a simple beam with a uniform load is given in Case 1 of Table H-2, Appendix H, as

v=-\frac{q x}{24 E I}\left(L^{3}-2 L x^{2}+x^{3}\right)             (c)

3. Analyze: Taking two derivatives of this equation gives

\frac{d v}{d x}=-\frac{q}{24 E I}\left(L^{3}-6 L x^{2}+4 x^{3}\right) \quad \frac{d^{2} v}{d x^{2}}=\frac{q}{2 E I}\left(L x-x^{2}\right)

Substitute the latter expression into the equation for strain energy [Eq. (9-95b)] to obtain

U=\int_{0}^{L} \frac{E I}{2}\left(\frac{d^{2} v}{d x^{2}}\right)^{2} d x=\frac{E I}{2} \int_{0}^{L}\left[\frac{q}{2 E I}\left(L x-x^{2}\right)\right]^{2} d x

= \frac{q^{2}}{8 E I} \int_{0}^{L}\left(L^{2} x^{2}-2 L x^{3}+x^{4}\right) d x               (d)

4. Finalize: The final integral in this equation is the same as the final integral in Eq. (b) which leads to the same result as before [Eq. (9-98)].

Table H-2
Deflections and Slopes of Simple Beams
Notation:
v = deflection in the y direction (positive upward)
v′ = dv/dx = slope of the deflection curve
\delta_{C}=-v(L / 2)= deflection at midpoint C of the beam (positive downward)
x_{1} = distance from support A to point of maximum deflection
\delta_{\max }=-v_{\max }= maximum deflection (positive downward)
\theta_{A}=-v^{\prime}(0)= angle of rotation at left-hand end of the beam (positive clockwise)
\theta_{B}=v^{\prime}(L)= angle of rotation at right-hand end of the beam (positive counterclockwise)
EI = constant
v=-\frac{q x}{24 E I}\left(L^{3}-2 L x^{2}+x^{3}\right)
v^{\prime}=-\frac{q}{24 E I}\left(L^{3}-6 L x^{2}+4 x^{3}\right)
\delta_{C}=\delta_{\max }=\frac{5 q L^{4}}{384 E I} \quad\theta_{A}=\theta_{B}=\frac{q L^{3}}{24 E I}
v=-\frac{q x}{384 E I}\left(9 L^{3}-24 L x^{2}+16 x^{3}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)
v^{\prime}=-\frac{q}{384 E I}\left(9 L^{3}-72 L x^{2}+64 x^{3}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)
v=-\frac{q L}{384 E I}\left(8 x^{3}-24 L x^{2}+17 L^{2} x-L^{3}\right) \quad\left(\frac{L}{2} \leq x \leq L\right)
v^{\prime}=-\frac{q L}{384 E I}\left(24 x^{2}-48 L x+17 L^{2}\right) \quad\left(\frac{L}{2} \leq x \leq L\right)
\delta_{C}=\frac{5 q L^{4}}{768 E I} \quad \theta_{A}=\frac{3 q L^{3}}{128 E I} \quad \theta_{B}=\frac{7 q L^{3}}{384 E I}
v=-\frac{q x}{24 L E I}\left(a^{4}-4 a^{3} L+4 a^{2} L^{2}+2 a^{2} x^{2}-4 a L x^{2}+L x^{3}\right) \quad(0 \leq x \leq a)
v^{\prime}=-\frac{q}{24 L E I}\left(a^{4}-4 a^{3} L+4 a^{2} L^{2}+6 a^{2} x^{2}-12 a L x^{2}-4 L x^{3}\right) \quad(0 \leq x \leq a)
v=-\frac{q a^{2}}{24 L E I}\left(-a^{2} L+4 L^{2} x+a^{2} x-6 L x^{2}+2 x^{3}\right)             (a \leq x \leq L)
v^{\prime}=-\frac{q a^{2}}{24 L E I}\left(4 L^{2}+a^{2}-12 L x+6 x^{2}\right)              (a \leq x \leq L)
\theta_{A}=\frac{q a^{2}}{24 L E I}(2 L-a)^{2}   \quad \theta_{B}=\frac{q a^{2}}{24 L E I}\left(2 L^{2}-a^{2}\right)
v=-\frac{P x}{48 E I}\left(3 L^{2}-4 x^{2}\right) \quad v^{\prime}=-\frac{P}{16 E I}\left(L^{2}-4 x^{2}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)
\delta_{C}=\delta_{\max }=\frac{P L^{3}}{48 E I} \quad \theta_{A}=\theta_{B}=\frac{P L^{2}}{16 E I}
v=-\frac{P b x}{6 L E I}\left(L^{2}-b^{2}-x^{2}\right) \quad v^{\prime}=-\frac{P b}{6 L E I}\left(L^{2}-b^{2}-3 x^{2}\right) \quad(0 \leq x \leq a)
\theta_{A}=\frac{P a b(L+b)}{6 L E I} \quad \theta_{B}=\frac{P a b(L+a)}{6 L E I}
\text { If } a \geq b, \quad \delta_{C}=\frac{P b\left(3 L^{2}-4 b^{2}\right)}{48 E I} \quad \text { If } a \leq b, \quad \delta_{C}=\frac{P a\left(3 L^{2}-4 a^{2}\right)}{48 E I}
\text { If } a \geq b, \quad x_{1}=\sqrt{\frac{L^{2}-b^{2}}{3}} \quad \text { and } \quad \delta_{\max }=\frac{P b\left(L^{2}-b^{2}\right)^{3 / 2}}{9 \sqrt{3} L E I}
v=-\frac{P x}{6 E I}\left(3 a L-3 a^{2}-x^{2}\right) \quad v^{\prime}=-\frac{P}{2 E I}\left(a L-a^{2}-x^{2}\right) \quad(0 \leq x \leq a)
v=-\frac{P a}{6 E I}\left(3 L x-3 x^{2}-a^{2}\right) \quad v^{\prime}=-\frac{P a}{2 E I}(L-2 x) \quad(a \leq x \leq L-a)
\delta_{C}=\delta_{\max }=\frac{P a}{24 E I}\left(3 L^{2}-4 a^{2}\right) \quad \theta_{A}=\theta_{B}=\frac{P a(L-a)}{2 E I}
v=-\frac{M_{0} x}{6 L E I}\left(2 L^{2}-3 L x+x^{2}\right) \quad v^{\prime}=-\frac{M_{0}}{6 L E I}\left(2 L^{2}-6 L x+3 x^{2}\right)
\delta_{C}=\frac{M_{0} L^{2}}{16 E I} \quad \theta_{A}=\frac{M_{0} L}{3 E I} \quad \theta_{B}=\frac{M_{0} L}{6 E I}
x_{1}=L\left(1-\frac{\sqrt{3}}{3}\right) \text { and } \delta_{\max }=\frac{M_{0} L^{2}}{9 \sqrt{3} E I}
v=-\frac{M_{0} x}{24 L E I}\left(L^{2}-4 x^{2}\right) \quad v^{\prime}=-\frac{M_{0}}{24 L E I}\left(L^{2}-12 x^{2}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)
\delta_{C}=0 \quad \theta_{A}=\frac{M_{0} L}{24 E I} \quad \theta_{B}=-\frac{M_{0} L}{24 E I}
v=-\frac{M_{0} x}{6 L E I}\left(6 a L-3 a^{2}-2 L^{2}-x^{2}\right) \quad(0 \leq x \leq a)
v^{\prime}=-\frac{M_{0}}{6 L E I}\left(6 a L-3 a^{2}-2 L^{2}-3 x^{2}\right) \quad(0 \leq x \leq a)
\text { At } x=a: \quad v=-\frac{M_{0} a b}{3 L E I}(2 a-L) \quad v^{\prime}=-\frac{M_{0}}{3 L E I}\left(3 a L-3 a^{2}-L^{2}\right)
\theta_{A}=\frac{M_{0}}{6 L E I}\left(6 a L-3 a^{2}-2 L^{2}\right) \quad \theta_{B}=\frac{M_{0}}{6 L E I}\left(3 a^{2}-L^{2}\right)
v=-\frac{M_{0} x}{2 E I}(L-x) \quad v^{\prime}=-\frac{M_{0}}{2 E I}(L-2 x)
\delta_{C}=\delta_{\max }=\frac{M_{0} L^{2}}{8 E I} \quad \theta_{A}=\theta_{B}=\frac{M_{0} L}{2 E I}
v=-\frac{q_{0} x}{360 L E I}\left(7 L^{4}-10 L^{2} x^{2}+3 x^{4}\right)
v^{\prime}=-\frac{q_{0}}{360 L E I}\left(7 L^{4}-30 L^{2} x^{2}+15 x^{4}\right)
\delta_{C}=\frac{5 q_{0} L^{4}}{768 E I} \quad \theta_{A}=\frac{7 q_{0} L^{3}}{360 E I} \quad \theta_{B}=\frac{q_{0} L^{3}}{45 E I}
x_{1}=0.5193 L \quad \delta_{\max }=0.00652 \frac{q_{0} L^{4}}{E I}
v=-\frac{q_{0} x}{960 L E I}\left(5 L^{2}-4 x^{2}\right)^{2} \quad\left(0 \leq x \leq \frac{L}{2}\right)
v^{\prime}=-\frac{q_{0}}{192 L E I}\left(5 L^{2}-4 x^{2}\right)\left(L^{2}-4 x^{2}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)
\delta_{C}=\delta_{ max }=\frac{q_{0} L^{4}}{120 E I} \quad \theta_{A}=\theta_{B}=\frac{5 q_{0} L^{3}}{192 E I}
v=-\frac{q_{0} L^{4}}{\pi^{4} E I} \sin \frac{\pi x}{L} \quad v^{\prime}=-\frac{q_{0} L^{3}}{\pi^{3} E I} \cos \frac{\pi x}{L}
\delta_{C}=\delta_{ max }=\frac{q_{0} L^{4}}{\pi^{4} E I} \quad \theta_{A}=\theta_{B}=\frac{q_{0} L^{3}}{\pi^{3} E I}

Related Answered Questions