Question 9.12: A simple beam ADB supports a concentrated load P acting at t...

A simple beam ADB supports a concentrated load P acting at the position shown in Fig. 9-26. Determine the angle of rotation θ_{A} at support A and the deflection δ_{D} under the load P. Note: The beam has a length L and constant flexural rigidity EI.

9.12
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Use a four-step problem-solving approach.
1. Conceptualize: The deflection curve, showing the angle of rotation \theta_{A} and the deflection \delta_{D}, is sketched in Fig. 9-26b. The directions of \theta_{A}   and   \delta_{D} are determined by inspection, so write the moment-area expressions using only absolute values.

2. Categorize:
M/EI diagram: The bending-moment diagram is triangular, with the maximum moment (equal to Pab/L) occurring under the load. Since EI is constant, the M/EI diagram has the same shape as the moment diagram (see Fig. 9-26c).

3. Analyze:
Angle of rotation at support A: To find this angle, construct the tangent AB_{1} at support A. Note that the distance BB_{1} is the tangential deviation t_{B/A} of point B from the tangent at A. Calculate this distance by evaluating the first moment of the area of the M/EI diagram with respect to point B and then applying the second moment-area theorem.
The area of the entire M/EI diagram is

A_{1}=\frac{1}{2}(L)\left(\frac{P a b}{L E I}\right)=\frac{P a b}{2 E I}

The centroid C_{1} of this area is at distance \bar{x}_{1} from point B (see Fig. 9-26c). This distance, obtained from Case 3 of Appendix E, is

\bar{x}_{1}=\frac{L+b}{3}

Therefore, the tangential deviation is

t_{B / A}=A_{1} \bar{x}_{1}=\frac{P a b}{2 E I}\left(\frac{L+b}{3}\right)=\frac{P a b}{6 E I}(L+b)

The angle \theta_{A} is equal to the tangential deviation divided by the length of the beam:

\theta_{A}=\frac{t_{B / A}}{L}=\frac{P a b}{6 L E I}(L+b)            (9-82)

Thus, the angle of rotation at support A has been found.
Deflection under the load: As shown in Fig. 9-26b, the deflection \delta_{D} under the load P is equal to the distance DD_{1} minus the distance D_{2}D_{1}. The distance DD_{1} is equal to the angle of rotation \theta_{A} times the distance a; thus,

D D_{1}=a \theta_{A}=\frac{P a^{2} b}{6 L E I}(L+b)            (a)

The distance D_{2}D_{1} is the tangential deviation t_{D/A} at point D; that is, it is the deviation of point D from the tangent at A. This distance can be found from the second moment-area theorem by taking the first moment of the area of the M/EI diagram between points A and D with respect to D (see Fig. 9-26c). The area of this part of the M/EI diagram is

A_{2}=\frac{1}{2}(a)\left(\frac{P a b}{L E I}\right)=\frac{P a^{2} b}{2 L E I}

and its centroidal distance from point D is

\bar{x}_{2}=\frac{a}{3}

Thus, the first moment of this area with respect to point D is

t_{D / A}=A_{2} \bar{x}_{2}=\left(\frac{P a^{2} b}{2 L E I}\right)\left(\frac{a}{3}\right)=\frac{P a^{3} b}{6 L E I}              (b)

The deflection at point D is

\delta_{D}=D D_{1}-D_{2} D_{1}=D D_{1}-t_{D / A}

Substitute from Eqs. (a) and (b) to find

\delta_{D}=\frac{P a^{2} b}{6 L E I}(L+b)-\frac{P a^{3} b}{6 L E I}=\frac{P a^{2} b^{2}}{3 L E I}           (9-83)

4. Finalize: The preceding formulas for \theta_{A} and \delta_{D} in Eqs. (9-82) and (9-83) can be verified by using the formulas of Case 5, Table H-2, Appendix H.

Table H-2
Deflections and Slopes of Simple Beams
Notation:
v = deflection in the y direction (positive upward)
v′ = dv/dx = slope of the deflection curve
\delta_{C}=-v(L / 2)= deflection at midpoint C of the beam (positive downward)
x_{1} = distance from support A to point of maximum deflection
\delta_{\max }=-v_{\max }= maximum deflection (positive downward)
\theta_{A}=-v^{\prime}(0)= angle of rotation at left-hand end of the beam (positive clockwise)
\theta_{B}=v^{\prime}(L)= angle of rotation at right-hand end of the beam (positive counterclockwise)
EI = constant
v=-\frac{q x}{24 E I}\left(L^{3}-2 L x^{2}+x^{3}\right)
v^{\prime}=-\frac{q}{24 E I}\left(L^{3}-6 L x^{2}+4 x^{3}\right)
\delta_{C}=\delta_{\max }=\frac{5 q L^{4}}{384 E I} \quad\theta_{A}=\theta_{B}=\frac{q L^{3}}{24 E I}
v=-\frac{q x}{384 E I}\left(9 L^{3}-24 L x^{2}+16 x^{3}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)
v^{\prime}=-\frac{q}{384 E I}\left(9 L^{3}-72 L x^{2}+64 x^{3}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)
v=-\frac{q L}{384 E I}\left(8 x^{3}-24 L x^{2}+17 L^{2} x-L^{3}\right) \quad\left(\frac{L}{2} \leq x \leq L\right)
v^{\prime}=-\frac{q L}{384 E I}\left(24 x^{2}-48 L x+17 L^{2}\right) \quad\left(\frac{L}{2} \leq x \leq L\right)
\delta_{C}=\frac{5 q L^{4}}{768 E I} \quad \theta_{A}=\frac{3 q L^{3}}{128 E I} \quad \theta_{B}=\frac{7 q L^{3}}{384 E I}
v=-\frac{q x}{24 L E I}\left(a^{4}-4 a^{3} L+4 a^{2} L^{2}+2 a^{2} x^{2}-4 a L x^{2}+L x^{3}\right) \quad(0 \leq x \leq a)
v^{\prime}=-\frac{q}{24 L E I}\left(a^{4}-4 a^{3} L+4 a^{2} L^{2}+6 a^{2} x^{2}-12 a L x^{2}-4 L x^{3}\right) \quad(0 \leq x \leq a)
v=-\frac{q a^{2}}{24 L E I}\left(-a^{2} L+4 L^{2} x+a^{2} x-6 L x^{2}+2 x^{3}\right)             (a \leq x \leq L)
v^{\prime}=-\frac{q a^{2}}{24 L E I}\left(4 L^{2}+a^{2}-12 L x+6 x^{2}\right)              (a \leq x \leq L)
\theta_{A}=\frac{q a^{2}}{24 L E I}(2 L-a)^{2}   \quad \theta_{B}=\frac{q a^{2}}{24 L E I}\left(2 L^{2}-a^{2}\right)
v=-\frac{P x}{48 E I}\left(3 L^{2}-4 x^{2}\right) \quad v^{\prime}=-\frac{P}{16 E I}\left(L^{2}-4 x^{2}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)
\delta_{C}=\delta_{\max }=\frac{P L^{3}}{48 E I} \quad \theta_{A}=\theta_{B}=\frac{P L^{2}}{16 E I}
v=-\frac{P b x}{6 L E I}\left(L^{2}-b^{2}-x^{2}\right) \quad v^{\prime}=-\frac{P b}{6 L E I}\left(L^{2}-b^{2}-3 x^{2}\right) \quad(0 \leq x \leq a)
\theta_{A}=\frac{P a b(L+b)}{6 L E I} \quad \theta_{B}=\frac{P a b(L+a)}{6 L E I}
\text { If } a \geq b, \quad \delta_{C}=\frac{P b\left(3 L^{2}-4 b^{2}\right)}{48 E I} \quad \text { If } a \leq b, \quad \delta_{C}=\frac{P a\left(3 L^{2}-4 a^{2}\right)}{48 E I}
\text { If } a \geq b, \quad x_{1}=\sqrt{\frac{L^{2}-b^{2}}{3}} \quad \text { and } \quad \delta_{\max }=\frac{P b\left(L^{2}-b^{2}\right)^{3 / 2}}{9 \sqrt{3} L E I}
v=-\frac{P x}{6 E I}\left(3 a L-3 a^{2}-x^{2}\right) \quad v^{\prime}=-\frac{P}{2 E I}\left(a L-a^{2}-x^{2}\right) \quad(0 \leq x \leq a)
v=-\frac{P a}{6 E I}\left(3 L x-3 x^{2}-a^{2}\right) \quad v^{\prime}=-\frac{P a}{2 E I}(L-2 x) \quad(a \leq x \leq L-a)
\delta_{C}=\delta_{\max }=\frac{P a}{24 E I}\left(3 L^{2}-4 a^{2}\right) \quad \theta_{A}=\theta_{B}=\frac{P a(L-a)}{2 E I}
v=-\frac{M_{0} x}{6 L E I}\left(2 L^{2}-3 L x+x^{2}\right) \quad v^{\prime}=-\frac{M_{0}}{6 L E I}\left(2 L^{2}-6 L x+3 x^{2}\right)
\delta_{C}=\frac{M_{0} L^{2}}{16 E I} \quad \theta_{A}=\frac{M_{0} L}{3 E I} \quad \theta_{B}=\frac{M_{0} L}{6 E I}
x_{1}=L\left(1-\frac{\sqrt{3}}{3}\right) \text { and } \delta_{\max }=\frac{M_{0} L^{2}}{9 \sqrt{3} E I}
v=-\frac{M_{0} x}{24 L E I}\left(L^{2}-4 x^{2}\right) \quad v^{\prime}=-\frac{M_{0}}{24 L E I}\left(L^{2}-12 x^{2}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)
\delta_{C}=0 \quad \theta_{A}=\frac{M_{0} L}{24 E I} \quad \theta_{B}=-\frac{M_{0} L}{24 E I}
v=-\frac{M_{0} x}{6 L E I}\left(6 a L-3 a^{2}-2 L^{2}-x^{2}\right) \quad(0 \leq x \leq a)
v^{\prime}=-\frac{M_{0}}{6 L E I}\left(6 a L-3 a^{2}-2 L^{2}-3 x^{2}\right) \quad(0 \leq x \leq a)
\text { At } x=a: \quad v=-\frac{M_{0} a b}{3 L E I}(2 a-L) \quad v^{\prime}=-\frac{M_{0}}{3 L E I}\left(3 a L-3 a^{2}-L^{2}\right)
\theta_{A}=\frac{M_{0}}{6 L E I}\left(6 a L-3 a^{2}-2 L^{2}\right) \quad \theta_{B}=\frac{M_{0}}{6 L E I}\left(3 a^{2}-L^{2}\right)
v=-\frac{M_{0} x}{2 E I}(L-x) \quad v^{\prime}=-\frac{M_{0}}{2 E I}(L-2 x)
\delta_{C}=\delta_{\max }=\frac{M_{0} L^{2}}{8 E I} \quad \theta_{A}=\theta_{B}=\frac{M_{0} L}{2 E I}
v=-\frac{q_{0} x}{360 L E I}\left(7 L^{4}-10 L^{2} x^{2}+3 x^{4}\right)
v^{\prime}=-\frac{q_{0}}{360 L E I}\left(7 L^{4}-30 L^{2} x^{2}+15 x^{4}\right)
\delta_{C}=\frac{5 q_{0} L^{4}}{768 E I} \quad \theta_{A}=\frac{7 q_{0} L^{3}}{360 E I} \quad \theta_{B}=\frac{q_{0} L^{3}}{45 E I}
x_{1}=0.5193 L \quad \delta_{\max }=0.00652 \frac{q_{0} L^{4}}{E I}
v=-\frac{q_{0} x}{960 L E I}\left(5 L^{2}-4 x^{2}\right)^{2} \quad\left(0 \leq x \leq \frac{L}{2}\right)
v^{\prime}=-\frac{q_{0}}{192 L E I}\left(5 L^{2}-4 x^{2}\right)\left(L^{2}-4 x^{2}\right) \quad\left(0 \leq x \leq \frac{L}{2}\right)
\delta_{C}=\delta_{ max }=\frac{q_{0} L^{4}}{120 E I} \quad \theta_{A}=\theta_{B}=\frac{5 q_{0} L^{3}}{192 E I}
v=-\frac{q_{0} L^{4}}{\pi^{4} E I} \sin \frac{\pi x}{L} \quad v^{\prime}=-\frac{q_{0} L^{3}}{\pi^{3} E I} \cos \frac{\pi x}{L}
\delta_{C}=\delta_{ max }=\frac{q_{0} L^{4}}{\pi^{4} E I} \quad \theta_{A}=\theta_{B}=\frac{q_{0} L^{3}}{\pi^{3} E I}

Related Answered Questions