Question 7.10: A simply supported beam AB carries a concentrated load P at ...

A simply supported beam AB carries a concentrated load P at the midpoint C. The left half of the beam has area moment of inertia I while the right half has area moment of inertia 2I. Find out slopes at A and B and deflection at C [(refer Figure 7.15(a)].

7.15
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Using Theorem II, we get
Tangential deviation of A with respect to B:

tA/B=AA=PL4EIL4L3+PL8EIL42L3=PL324EI t_{ A / B }= AA ^{\prime}=\frac{P L}{4 E I} \cdot \frac{L}{4} \cdot \frac{L}{3}+\frac{P L}{8 E I} \frac{L}{4} \cdot \frac{2 L}{3}=\frac{P L^3}{24 E I}

Now θB is slope at B=AA/AB \theta_{ B } \text { is slope at } B = AA ^{\prime} / AB

or        θB=PL324EI×1L=PL224EI \theta_{ B }=\frac{P L^3}{24 E I} \times \frac{1}{L}=\frac{P L^2}{24 E I}            (1)

Similarly, tangential deviation of B with respect to A:

tB/A=BB=PL8EIL4L3+PL4EIL42L3=5PL396EI t_{ B / A }= BB ^{\prime}=\frac{P L}{8 E I} \cdot \frac{L}{4} \cdot \frac{L}{3}+\frac{P L}{4 E I} \cdot \frac{L}{4} \cdot \frac{2 L}{3}=\frac{5 P L^3}{96 E I}

and also,

θA=BBAB=5PL396EI×1L=5PL296EI \theta_{ A }=\frac{ BB ^{\prime}}{ AB }=\frac{5 P L^3}{96 E I} \times \frac{1}{L}=\frac{5 P L^2}{96 E I}             (2)

From Eqs. (1) and (2), we get

θAθB=54 \frac{\theta_{ A }}{\theta_{ B }}=\frac{5}{4}

Now to get the deflection δC at point C, we first find tC/B \delta_{ C } \text { at point } C \text {, we first find } t_{ C / B } ,  that is, tangential deviation of C with respect to B:

tC/B=PL8EIL4L6=PL3192EI t_{ C / B }=\frac{P L}{8 E I} \cdot \frac{L}{4} \cdot \frac{L}{6}=\frac{P L^3}{192 E I}

From Figure 7.15(c) and (d):

δC=AA2tC/B=PL348EIPL3192EI=PL364EI \delta_{ C }=\frac{ AA ^{\prime}}{2}-t_{ C / B }=\frac{P L^3}{48 E I}-\frac{P L^3}{192 E I}=\frac{P L^3}{64 E I}

so the slopes are

θA=5PL296EI and θB=PL224EI \theta_{ A }=\frac{5 P L^2}{96 E I} \quad \text { and } \quad \theta_{ B }=\frac{P L^2}{24 E I}

and deflection at C is

δC=PL364EI \delta_{ C }=\frac{P L^3}{64 E I}

Related Answered Questions

Question: 7.18

Verified Answer:

From the previous problem, we note that the flexur...
Question: 7.17

Verified Answer:

We note from the given beam loading that it is a s...
Question: 7.16

Verified Answer:

Let us draw the free-body diagram of the beam as s...
Question: 7.15

Verified Answer:

Let us first draw the free-body diagram of the bea...
Question: 7.11

Verified Answer:

We draw the free-body diagram of the beam as shown...
Question: 7.8

Verified Answer:

In the problem, the load P is applied such that sy...