Question 7.S-P.1: A single horizontal force P of magnitude 150 lb is applied t...

A single horizontal force P of magnitude 150 lb is applied to end D of lever ABD. Knowing that portion AB of the lever has a diameter of 1.2 in., determine (a) the normal and shearing stresses on an element located at point H and having sides parallel to the x and y axes, (b) the principal planes and the principal stresses at point H.

7.1
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Force-Couple System.     We replace the force P by an equivalent force-couple system at the center C of the transverse section containing point H:

P = 150 lb                      T = (150 lb) (18 in.) = 2.7 kip · in.

M_{x}=(150 lb )(10 in .)=1.5 kip \cdot \text { in. }

a. Stresses S_{x}, S _{y}, T _{x y} at Point H. Using the sign convention shown in Fig. 7.2, we determine the sense and the sign of each stress component by carefully examining the sketch of the force-couple system at point C:

s _{x}=0                      s _{y}=+\frac{M c}{I}=+\frac{(1.5 kip \cdot in .)(0.6 in .)}{\frac{1}{4} p (0.6 in .)^{4}}                          s _{y}=+8.84 ksi

 

t _{x y}=+\frac{T c}{J}=+\frac{(2.7 kip \cdot in .)(0.6 in .)}{\frac{1}{2} p (0.6 in .)^{4}}                          t _{x y}=+7.96 ksi

We note that the shearing force P does not cause any shearing stress at point H.

b. Principal Planes and Principal Stresses.     Substituting the values of the stress components into Eq. (7.12), we determine the orientation of the principal planes:

\tan 2 u _{p}=\frac{2 t _{x y}}{ s _{x}- s _{y}}                    (7.12)

 

\tan 2 u _{p}=\frac{2 t _{x y}}{ s _{x}- s _{y}}=\frac{2(7.96)}{0-8.84}=-1.80

 

2 u _{p}=-61.0^{\circ}                 and              180° – 61.0° = +119°

u _{p}= -30.5°                  and                  +59.5°

Substituting into Eq. (7.14), we determine the magnitudes of the principal stresses:

s _{\max , \min }=\frac{ s _{x}+ s _{y}}{2} \pm \sqrt{\left(\frac{ s _{ x }- s _{ y }}{2}\right)^{2}+ t _{x y}^{2}}                            (7.14)

 

=\frac{0+8.84}{2} \pm \sqrt{\left(\frac{0-8.84}{2}\right)^{2}+(7.96)^{2}}=+4.42 \pm 9.10

 

s _{\max }=+13.52 ksi

 

s _{\min }=-4.68 ksi

Considering face ab of the element shown, we make u_{p}=-30.5^{\circ} in Eq. (7.5) and find s_{x^{\prime}}=-4.68 ksi. We conclude that the principal stresses are as shown.

s _{x^{\prime}}=\frac{ s _{x}+ s _{y}}{2}+\frac{ s _{x}- s _{y}}{2} \cos 2 u + t _{x y} \sin 2 u                                  (7.5)

7.2
7.22
7.23

Related Answered Questions