Question 6.11: A Single-Link Robot Arm Driven by a DC Motor Consider the dy...

A Single-Link Robot Arm Driven by a DC Motor

Consider the dynamic system shown in Figure 6.46, in which a single-link robot arm is driven by a DC motor. The differential equation of the robot arm in terms of the motor variable \theta_{\mathrm{m}} was determined in Example 5.17 to be

\left(I_{\mathrm{m}}+N^{2}I\right) \ddot{\theta}_{\mathrm{m}}+\left(B_{\mathrm{m}}+N^{2} B\right) \dot{\theta}_{\mathrm{m}}=\tau_{\mathrm{m}^{\prime}}

where I_{\mathrm{m}} and I are the mass moments of inertia of the motor and the load, respectively, B_{\mathrm{m}} and B are the coefficients of the torsional viscous damping of the motor and the load, respectively, \tau_{\mathrm{m}} is the torque generated by the motor, and N is the gear ratio. Assume that the armature inductance is negligibly small, that is, L_{\mathrm{a}} \approx 0. The torque and the back emf constants of the motor are K_{\mathrm{t}} and K_{\mathrm{e}}, respectively.

a. Derive the differential equation relating the applied voltage v_{\mathrm{a}} and the link angular displacement \theta.

b. Determine the transfer function \Theta(s) / V_{\mathrm{a}}(s) using the differential equation obtained in Part (a). Assume that all initial conditions are zero.

6.46
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a. For the electrical circuit, applying Kirchhoff’s voltage law gives

R_{\mathrm{a}} i_{\mathrm{a}}+\mathrm{e}_{\mathrm{b}}-v_{\mathrm{a}}=0,

where e_{\mathrm{b}}=K_{\mathrm{e}} \dot{\theta}_{\mathrm{m}}. With the given gear ratio,

\theta=N \theta_{m},

we have

R_{\mathrm{a}} i_{\mathrm{a}}=v_{\mathrm{a}}-K_{\mathrm{e}} \frac{1}{N} \dot{\theta}.

Thus, the current i_{\mathrm{a}} can be expressed as

i_{\mathrm{a}}=\frac{1}{R_{\mathrm{a}}} v_{\mathrm{a}}-\frac{K_{\mathrm{e}}}{R_{\mathrm{a}}} \frac{1}{N} \dot{\theta}.

The model of the mechanical part in terms of \theta is given by

\left(I_{\mathrm{m}}+N^{2} I\right) \frac{1}{N} \ddot{\theta}+\left(B_{\mathrm{m}}+N^{2} B\right) \frac{1}{N} \dot{\theta}=\tau_{\mathrm{m}^{\prime}}

where \tau_{\mathrm{m}}=K_{\mathrm{t}} i_{\mathrm{a}}. Substituting the expression of the current i_{\mathrm{a}^{\prime}} we obtain

\left(I_{\mathrm{m}}+N^{2} I\right) \frac{1}{N} \ddot{\theta}+\left(B_{\mathrm{m}}+N^{2} B\right) \frac{1}{N} \dot{\theta}=K_{\mathrm{t}}\left(\frac{1}{R_{\mathrm{a}}} V_{\mathrm{a}}-\frac{K_{\mathrm{e}}}{R_{\mathrm{a}}} \frac{1}{N} \dot{\theta}\right) .

Rearranging the equation yields

\left(I_{\mathrm{m}}+N^{2} I\right) \ddot{\theta}+\left(B_{\mathrm{m}}+N^{2} B+\frac{K_{\mathrm{t}} K_{\mathrm{e}}}{R_{\mathrm{a}}}\right) \dot{\theta}=\frac{N K_{\mathrm{t}}}{R_{\mathrm{a}}} V_{\mathrm{a}} .

b. Taking the Laplace transform results in

\frac{\Theta(s)}{V_{\mathrm{a}}(s)}=\frac{N K_{\mathrm{t}} / R_{\mathrm{a}}}{\left(I_{\mathrm{m}}+N^{2} I\right) s^{2}+\left(B_{\mathrm{m}}+N^{2} B+K_{\mathrm{t}} K_{\mathrm{e}} / R_{\mathrm{a}}\right) s} .

This electromechanical system can be modeled using Simulink and Simscape. The details will be discussed in Section 6.6.

Related Answered Questions