Question 13.15: A six-cylinder, four-stroke Otto cycle internal combustion e...

A six-cylinder, four-stroke Otto cycle internal combustion engine has a total displacement of 260.  \text{ in³} and a compression ratio of 9.00 to 1. It is fueled with gasoline having a specific heating value of 20.0 × 10³  \text{Btu/lbm} and is fuel injected with a mass- ased air-fuel ratio of 16.0 to 1. During a dynamometer test, the intake pressure and temperature were found to be 8.00  \text{psia}  and 60.0°\text{F} while the engine was producing 85.0 brake hp at 4000. rpm. For the Otto cold ASC with k = 1.40, determine the

a. Cold ASC thermal efficiency of the engine.
b. Maximum pressure and temperature of the cycle.
c. Indicated power output of the engine.
d. Mechanical efficiency of the engine.
e. Actual thermal efficiency of the engine.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a. From Eq. (13.30), using k = 1.40 for the cold ASC,

(η_T)_{\substack{\text{Otto}\\\text{cold ASC}\\}} = 1 − \text{CR}^{1−k} = 1 − 9.00^{− 0.40}  = 0.585 = 58.5\%

b. From Figure 13.48a

\dot{Q}_H = \dot{Q}_\text{fuel} = (\dot{m} c _v)_a (T_1 − T_{4s}) = \dot{m}_\text{fuel} (A/F) (c_v)_a (T_1 − T_{4s})

and

T_1 = T_\text{max} = T_{4s} + \frac{(\dot{Q} /\dot{m})_\text{fuel}}{(A/F)_\text{mass} (c_v)_a}

Since process 3 to 4s is isentropic, Eq. (7.38) gives

\frac{T_{os}}{T} = (\frac{p_{os}}{p})^{(k−1)/k} = (\frac{v_{os}}{v})^{1− k} = (\frac{p_{os}}{p})^{k−1}                    (7.38)

T_{4s} = T_3 \text{CR}^{k-1} = (60.0 + 459.67) (9.00)^{0.40} = 1250  \text{R}

Then,

T_\text{max } = \frac{20.0 × 10³  \text{ Btu/lbm fuel}}{(16.0  \text{lbm air/lbm fuel})[0.172  \text{ Btu/(lbm air.R)}]} + 1250  \text{R} = 8520  \text{R}

Since process 4s to 1 is isochoric, the ideal gas equation of state gives

p_\text{max} = p_1 = p_{4s} (T_1/T_{4s})

and, since the process 3 to 4s is isentropic,

T_{4s}/T_3 (p_{4s}/p_3)^{(k−1)/k}

or

p_{4s} = p_3 (T_{4s}/T_3)^{k/(k-1)} = (8.00  \text{psia}) (\frac{1250  \text{R}}{520  \text{R}})^{1.40/0.40} = 172  \text{psia}

then,

p_\text{max} = (172  \text{psia}) [(8520  \text{R})/1250  \text{R}] = 1170  \text{psia}

c. Equation (13.34) gives the indicated power as

(\dot{W}_1)_\text{out} = \frac{(η_T)_\text{ASC} (\dot{Q}/\dot{m})_\text{fuel} (DNp_1/C)}{(A/F) (RT_1) (CR – 1)}               (13.34)

\left|\dot{W}_1\right|_\text{out} = \frac{(0.585)(20.0 × 10³  \text{Btu/lbm})(260.  \text{ in³/rev})(4000.  \text{rev/min})(1170  \text{lbf /in²})/2}{(16.0)[0.0685  \text{Btu/(lbm.R)}](8520  \text{R})(9.00 − 1)(12  \text{in/ft})(60  \text{s/min})}

=(132,00  \text{ft.lbf/s}) (\frac{1  \text{hp}}{550  \text{ ft.lbf/s}} ) = 241  \text{hp}

d. Equation (13.33) gives the mechanical efficiency of the engine as

η_m = \frac{(\dot{W}_B)_\text{out}}{(\dot{W}_1)_\text{out}} = \frac{85.0  \text{hp}}{241  \text{hp}} = 0.353 = 35.3\%

e. Finally, the actual thermal efficiency of the engine can be determined from Eqs. (7.5) and (13.33) as

η_T = \frac{\text{Net work output}}{\text{Total heat input}} = \frac{\text{Engine work output − Pump work input}}{\text{Boiler heat input}}                 (7.5)

(η_T)_{\substack{\text{Otto}\\\text{actual}\\}} = \frac{(\dot{W}_B)_\text{out}}{\dot{Q}_\text{fuel}} = \frac{(η_m)(\dot{W}_1)_\text{out}}{\dot{Q}_\text{fuel}} = (η_m) (η_T)_{\substack{\text{Otto}\\\text{cold ASC }\\}}

= (0.353)(0.585) = 0.207 = 20.7\%

13.48

Related Answered Questions