Question 10.31: A slender curved bar AB lying in a horizontal plane with its...

A slender curved bar AB lying in a horizontal plane with its centre line forming a quarter circle of radius R shown in Figure 10.63 is subjected to a vertical force P along the negative z-direction at its free end. The bar has flexural rigidity = EI and torsional rigidity = GJ. Calculate the vertical deflection \left(\delta_v\right)_B  and angle of twist \phi_B  at end B.

10.63
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let us consider the free-body diagram of the bar as shown in Figure 10.64:

In Figure 10.64(a), we show the free-body diagram of the bar. We take an arbitrary section defined by the angle \theta(0 \leq \theta \leq \pi / 2) \text {. Clearly at } B^{\prime} , bending moment, torsional moment and shear force in z-direction act. In Figure 10.64(b), we show the free-body diagram of the portion BB’ of the slender bar in x-y plane. To compute bending moment \left(M_{ b }\right)_{ B ^{\prime}} \text { at } B ^{\prime} , we need to calculate moment of P about OB’ [refer to Figure 10.64(b)]. Similarly, torsional moment \left(M_{ t }\right)_{ B ^{\prime}} \text { at } B ^{\prime} will be the moment of P about BC [refer to Figure 10.64(b)]. Clearly from Figure 10.64(b), BC = R sin θ and B’C = R(1−cos θ). Therefore,

\left(M_{ b }\right)_{ B ^{\prime}}=(P)( BC )=P R \sin \theta

and      \left(M_{ t }\right)_{ B ^{\prime}}=(P)\left( B ^{\prime} C \right)=P R(1-\cos \theta)

Therefore, strain energy in the slender bar AB will be due to bending as well as due to torsion:

U_{ AB }=U_{\text {bending }}+U_{\text {torsion }}

=\left\lgroup \frac{1}{2 E I} \right\rgroup \int_0^{\pi / 2}\left(M_{ b }\right)_{ B ^{\prime}}^2(R d \theta)+\left\lgroup \frac{1}{2 G J} \right\rgroup \int_0^{\pi / 2} \left(M_{ t }\right)_{ B ^{\prime}}^2(R d \theta)

The vertical deflection is

\begin{aligned} \frac{\partial U_{ AB }}{\partial P}=\left(\delta_{ v }\right)_{ B }= & \left\lgroup\frac{1}{E I} \right\rgroup\int_0^{\pi / 2}\left(M_{ b }\right)_{ B ^{\prime}}\left\lgroup\frac{\partial M_{ b }}{\partial P} \right\rgroup (R d \theta) \\ & +\left\lgroup\frac{1}{G J} \right\rgroup \int_0^{\pi / 2} \left(M_{ t }\right)_{ B ^{\prime}}\left\lgroup\frac{\partial M_{ t }}{\partial P} \right\rgroup (R d \theta) \end{aligned}

Therefore,

\begin{aligned} \left(\delta_{ v }\right)_{ B } & =\left\lgroup \frac{1}{E I} \right\rgroup\left[\int_0^{\pi / 2} P R^3 \sin ^2 \theta d \theta\right]+\left\lgroup \frac{1}{G J} \right\rgroup\left[\int_0^{\pi / 2} P R^3(1-\cos \theta)^2 d \theta\right] \\ & =\left\lgroup \frac{1}{E I} \right\rgroup\left\lgroup \frac{P R^3}{2} \right\rgroup\left[\int_0^{\pi / 2}(1-\cos 2 \theta) d \theta\right]+\left\lgroup \frac{P R^3}{G J} \right\rgroup\left[\int_0^{\pi / 2}(1-\cos \theta)^2 d \theta\right] \\ & =\frac{P R^3}{2 E I}\left[\frac{\pi}{2}\right]+\left\lgroup \frac{P R^3}{G J} \right\rgroup\left\lgroup \frac{3 \pi-8}{4} \right\rgroup \end{aligned}

as        \int_0^{\pi / 2}(1-\cos \theta)^2 d \theta=\left\lgroup\frac{3 \pi-8}{4} \right\rgroup

using our previous result in Example 10.30. Therefore,

\left(\delta_{ v }\right)_{ B }=\frac{\pi P R^3}{4 E I}+\frac{(3 \pi-8) P R^3}{4 G J}(\downarrow)

To find \phi_{ B } , we need to apply a dummy moment, T_{ o } at end B as shown in Figure 10.65:

Clearly,

\begin{aligned} \left(M_{ b }\right)_{B^{\prime}} & =\left[P R \sin \theta+T_{ o } \cos \left\lgroup \frac{\pi}{2}-\theta \right\rgroup\right] \\ & =\left[P R \sin \theta+T_{ o } \sin \theta\right] \end{aligned}

which is the bending moment at B’ and

\left(M_{ t }\right)_{ B ^{\prime}}=P R(1-\cos \theta)-T_{ o } \cos \theta

which is the torsional moment at B’. Therefore,

\left\lgroup \frac{\partial M_{ b }}{\partial T_{ o }} \right\rgroup_{T_{ o }=0}=\sin \theta ; \quad\left\lgroup \frac{\partial M_{ t }}{\partial T_{ o }} \right\rgroup_{T_{ o }=0}=-\cos \theta

and so,

\phi_{ B }=\left\lgroup \frac{\partial U}{\partial T_{ o }} \right\rgroup_{T_{ o }=0}

Thus,

\begin{aligned} \phi_{ B } & =\left\lgroup \frac{1}{E I} \right\rgroup\left[\int_0^{\pi / 2}\left(M_{ b }\right)\left\lgroup \frac{\partial M_{ b }}{\partial T_{ o }} \right\rgroup (R d \theta)\right]_{T_{ o }=0}+\left\lgroup \frac{1}{G J} \right\rgroup\left[\int_0^{\pi / 2}\left(M_{ t }\right)\left\lgroup \frac{\partial M_{ t }}{\partial T_{ o }} \right\rgroup (R d \theta)\right]_{T_{ o }=0} \\ & =\left\lgroup \frac{1}{E I} \right\rgroup\left[\int_0^{\pi / 2} P R^2 \sin ^2 \theta d \theta\right]+\left\lgroup \frac{1}{G J} \right\rgroup\left[\int_0^{\pi / 2} P R^2(1-\cos \theta)(-\cos \theta) d \theta\right] \\ & =\left\lgroup \frac{1}{E I} \right\rgroup\left\lgroup \frac{\pi P R^2}{4} \right\rgroup -\frac{P R^2}{G J}\left\lgroup 1-\frac{\pi}{4} \right\rgroup \\ & =\frac{\pi P R^2}{4 E I}-\frac{(4-\pi) P R^2}{4 G J} \end{aligned}

or      \phi_{ B }=\left[\left\lgroup \frac{\pi}{E I} \right\rgroup-\left\lgroup \frac{4-\pi}{G J} \right\rgroup\right] P R^2

Direction of twist depend on relative strengths (EI ) and (GJ ).

10.64
10.65

Related Answered Questions

Question: 10.1

Verified Answer:

From Eq. (10.17), we can say U_i=\int_0^{L...
Question: 10.7

Verified Answer:

Let us calculate the reaction torques of the given...